Subject card

Subject name and code	Mathematics, PG_00048797						
Field of study	Green Technologies						
Date of commencement of studies	October 2020		Academic year of realisation of subject			2020/2021	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study	
Mode of study	Full-time studies		Mode of delivery			blended-learning	
Year of study	1		Language of instruction			Polish	
Semester of study	1		ECTS credits			10.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Anna Niewulis				
	Teachers		dr Anna Niewulis				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Project	Seminar	SUM
	Number of study hours	45.0	45.0	0.0	0.0	0.0	90

E-learning hours included: 45.0
Adresy na platformie eNauczanie:
ZIELONE TECHNOLOGIE [2020/21] - Moodle ID: 6425
https://enauczanie.pg.edu.pl/moodle/course/view.php?id=6425
Learning activity
and number of study hours

Subject objectives

Learning outcomes

Learning activity	Participation in didactic classes included in study plan	Participation in consultation hours	Self-study	SUM
Number of study hours	90	10.0	150.0	250
Students obtain competence in using methods of mathematical analysis (single variable calculus) and knowledge how to solve simple problems that are found in the field of engineering, in particular connected to green technologies and enviroment protection.				

Course outcome	Subject outcome	Method of verification
[K6_K01] understands the need for learning throughout life, can inspire and organize the learning process of others. Is aware of his/ her own limitations and knows when to ask the experts, can properly identify priorities for implementation, critically evaluate his knowledge	Student recognizes the importance of self-expanding knowledge and takes the challenge of working with a group to solve a problem. Student is able to process the acquired information, analyze and interpret it, is able to draw conclusions and reason opinions.	[SK2] Assessment of progress of work [SK1] Assessment of group work skills [SK5] Assessment of ability to solve problems that arise in practice
[K6_U03] is able to use information and communication technologies relevant to the common tasks of engineering, is able to use known methods and mathematical-physical models to describe and explain phenomena and chemical processes	Student combines knowledge of mathematics with knowledge from other fields. Student uses methods of mathematical description of phenomena in the physical and chemical processes.	[SU3] Assessment of ability to use knowledge gained from the subject [SU2] Assessment of ability to analyse information
[K6_W01] has a basic knowledge from some branches of mathematics and physics useful for formulating and solving simple problems in the field of environmental technologies and modern analytical methods	Student explains the concept of limit and continuity of functions and gives a graphic interpretation of discontinuity points. Student uses the first and second derivative of a function to analyze its properties. Student uses definite integral to solve geometrical problems. Student recognizes the importance of skillful use of basic mathematical apparatus in terms of study in the future.	[SW2] Assessment of knowledge contained in presentation [SW1] Assessment of factual knowledge

