

Subject card

Subject name and code	Thermodynamics, PG_00052074									
Field of study	Nanotechnology									
Date of commencement of studies	October 2020		Academic year of realisation of subject			2021/2022				
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study				
						Subject group related to scientific research in the field of study				
Mode of study	Full-time studies		Mode of delivery			blended-learning				
Year of study	2		Language of instruction			Polish				
Semester of study	3		ECTS credits			6.0				
Learning profile	general academic profile		Assessment form			assessment				
Conducting unit	Department of Solid State Physics -> Faculty of Applied Physics and Mathematics									
Name and surname of lecturer (lecturers)	Subject supervisor		prof. dr hab. inż. Jarosław Rybicki							
	Teachers	prof. dr hab. inż. Jarosław Rybicki								
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	atory Project		Seminar	SUM		
	Number of study hours	30.0	30.0	0.0	0.0		0.0	60		
	E-learning hours included: 30.0									
	Address on the e-learning platform: https://enauczanie.pg.edu.pl/moodle/course/view.php?id=9298 Adresy na platformie eNauczanie:									
	Termodynamika_21/22 - Moodle ID: 18995 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=18995									
Learning activity and number of study hours	Learning activity Participation ir classes includ plan				Self-study		SUM			
	Number of study 60 hours			5.0		85.0		150		
Subject objectives	The purpose of the subject is to familiarize students with the basics of phenomenological thermodynamics, in particular with 0-th, 1-st and 2-nd principle of thermodynamics. The principles will be illustrated with many various examples of applications.									
Learning outcomes	Course outcome		Subject outcome			Method of verification				
	K6_U02		The student can calculate the basic thermo-mechanical properties of matter using the underlying equations of state			[SU4] Assessment of ability to use methods and tools				
	K6_W03		The mentioned fields of physica are resented within other courses, here their thermodynamcal aspects have been highlighted.			[SW1] Assessment of factual knowledge				
	K6_W06		The mentioned fields of physica are resented within other courses, here their thermodynamcal aspects have been highlighted.			[SW1] Assessment of factual knowledge				
	K6_W05		The student understands and can formulate and discuss the three fundemental lows of thermodynamics			[SW1] Assessment of factual knowledge				
	K6_U01		Phenomenological thermodynamics formulates very general law. Numerous examples of applications (to magnetics,superconductors, defects in solids, etc.) show the efficiency of thermodynamic rules.			[SU3] Assessment of ability to use knowledge gained from the subject				

Data wydruku: 03.05.2024 01:14 Strona 1 z 4

Subject contents	LECTURE: Basic concepts. The 0-th law of thermodynamics. The first law of thermodynamics as the energy conservation principle. The second law of thermodynamics. Entropy. Thermodynamical potentials. Basic thermodynamics of chemical systems. Chemical potential. Mass action law. Gibbs phase rule. EXERCISES: Properties of ideal, semi-ideal and real gases. Gas laws. Thermal and caloric equation of state. Thermodynamic processes of ideal gas. Thermodynamics gas cycles. Entropy. Equilibrium conditions. Thermodynamical potentials and their properties. Examples of applications of thermodynamics in materials science.					
Prerequisites and co-requisites						
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade			
	Written exam in theory	51.0%	50.0%			
	Written test in problem solution	51.0%	50.0%			
Recommended reading	Basic literature	K. Gumiński, Termodynamika, PWN 1982 Sychev, Thermodynamics of complex systems				
	Supplementary literature	1. Mayhew R., Engineering thermodynamics/Work & Heat Transfer. J. Wiley & Sons Inc. 1993. USA.				
	eResources addresses	Termodynamika_21/22 - Moodle ID: 18995 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=18995				

Data wydruku: 03.05.2024 01:14 Strona 2 z 4

Example issues/ example questions/ tasks being completed

Define the concepts of the thermodynamic system, thermodynamic phase, uniform and non-uniform phase.

Define and discuss the concept of thermodynamic equilibrium.

Define the concepts of the adiabatic boundary and diathermic boundary.

Formulate the so-called zero principle of thermodynamics. Define the empirical temperature.

Discuss in detail the concept of quasi-equilibrium processes. Explain their importance in thermodynamics.

Formulate and discuss the postulate of existence of internal energy. Formulate the first principle of thermodynamics.

Discuss the concepts of elementary work and heat. What is the relation of these values with infinitesimal changes in internal energy? Pay attention to the mathematical nature of the discussed small increments.

Give the Plancks classic counterexample proving that constant heat Qel is not a total differential.

Define the concept of enthalpy. Formulate the first principle of thermodynamics with the help of enthalpy.

Discuss the direct conclusions arising from the first principle of thermodynamics applied to isochoric processes in single-phase systems.

Formulate and derive Hesss and Kirchhoff's laws for isochoric processes.

Discuss the direct conclusions arising from the first principle of thermodynamics applied to isobaric processes in single-phase systems.

Formulate and derive Hesss and Kirchhoff's laws for isobaric processes.

Discuss the concept of specific heat at constant volume and at constant pressure. Derive the general relation between them and give its physical sense. Apply the obtained results to ideal gas.

Discuss the equation of state for an ideal gas. What is the gas constant? What does its numerical value physically correspond to?

Quote Carathéodory's theorem and explain its fundamental importance for the mathematical formalism of phenomenological thermodynamics.

Formulate the postulate of existence of entropy and the integrating factor for DQ. What is the physical meaning of the integrating factor?

Demonstrate that the entropy of nature does not change in reversible transformation.

Demonstrate that the entropy of nature increases in irreversible transformation.

Discuss the direct conclusions arising from the second principle of thermodynamics applied to isothermal processes (6 conclusions in total).

Discuss the direct conclusions arising from the second principle of thermodynamics applied to isothermal-isochoric processes.

Discuss the direct conclusions arising from the second principle of thermodynamics applied to isothermal-isobaric processes.

Data wydruku: 03.05.2024 01:14 Strona 3 z 4

isentropic-isobaric processes. Discuss the direct conclusions arising from the second principle of thermodynamics applied to isentropic and Discuss the conditions of thermodynamic equilibrium in light of the second principle of thermodynamics and define the thermodynamic potentials. Discuss the relation between the thermodynamic potentials U (V,S), H (S,p), F (V,T), G (p,T). Assuming that free enthalpy is known as a function of T and p, calculate S and V and also F, H and U. Assuming that free energy is known as a function of T and V, calculate S and p and also G, U and H. Define thermodynamic functions for chemical systems. Characterize the intensive and extensive qualities in general. Introduce the concept of chemical potential. Define the concept of chemical activity and Lewiss activity coefficients. Define the concepts of ideal, perfect ideal and non-ideal phases. Give examples. Discuss the three basic properties of perfect gas mixtures (Dalton's, Joule's and Plancks laws). Formulate, derive and discuss the Gibbs phase rule. Formulate a general law of equilibrium shifts in thermodynamic systems. Not applicable Work placement

Data wydruku: 03.05.2024 01:14 Strona 4 z 4