Subject card | Subject name and code | Introduction to electronics and electrotechnics, PG_00052079 | | | | | | | | | |---|---|-------------------------|---|------------|------------|--|---------|-----|--| | Field of study | Nanotechnology | | | | | | | | | | Date of commencement of studies | October 2020 | | Academic year of realisation of subject | | | 2021/2022 | | | | | Education level | first-cycle studies | | Subject group | | | Obligatory subject group in the field of study | | | | | | | | | | | Subject group related to scientific research in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 2 | | Language of instruction | | | Polish | | | | | Semester of study | 4 | | ECTS credits | | | 5.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Zakład właściwości magnetycznych i elektrycznych materiałów -> Instytut Nanotechnologii i Inżynierii Materiałowej -> Faculty of Applied Physics and Mathematics | | | | | | | | | | Name and surname | Subject supervisor | dr inż. Zbigniew Usarek | | | | | | | | | of lecturer (lecturers) | Teachers | | dr inż. Bartosz Trawiński | | | | | | | | | | dr inż. Zbigniew Usarek | | | | | | | | | Lesson types and methods | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | of instruction | Number of study hours | 30.0 | 0.0 | 15.0 | 15.0 | | 0.0 | 60 | | | | E-learning hours included: 0.0 | | | | | | | | | | | Address on the e-learning platform: https://enauczanie.pg.edu.pl/moodle/course/view.php?id=17758 Adresy na platformie eNauczanie: | | | | | | | | | | Learning activity and number of study hours | Learning activity Participation in classes including plan | | | | Self-study | | SUM | | | | | Number of study hours | 60 | | 5.0 | | 60.0 | | 125 | | | Subject objectives | The aim of the course is to teach students the basics of electronics and electrical engineering, as well as basic skills in the design and testing of simple electronic circuits. | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | K6_W08 | | He or she knows the basic governing laws of electronics. He or she distinguishes between the main types of electronic components. | | | [SW1] Assessment of factual knowledge | | | | | | K6_U04 | | He or she independently plans and performs laboratory measurements of electrical quantities in accordance with received guidelines. He or she performs a critical analysis of the obtained measurement results and draws conclusions from them. | | | [SU1] Assessment of task fulfilment | | | | | | K6_U05 | | He or she can design and build a simple electronic circuit fulfilling a specific task. | | | [SU1] Assessment of task fulfilment | | | | | | K6_W09 | | He or she knows the structure and principle of operation of basic instruments for testing electrical circuits. | | | [SW1] Assessment of factual knowledge | | | | | | K6_U07 | | He or she can estimate the cost of purchasing the components needed to build the designed electronic circuit. | | | [SU2] Assessment of ability to analyse information | | | | Data wydruku: 20.04.2024 16:05 Strona 1 z 2 | | Basic definitions and laws of electricity Classification of electronic components Resistors Coils and capacitors Calculation of electronic circuits Passive filters Semiconductors Diodes Bipolar transistors Field effect transistors Other semiconductor elements Manufacturing of semiconductor devices Amplifiers and feedback Integrated circuits | | | | | | | |--|---|--|-------------------------------|--|--|--|--| | Prerequisites and co-requisites | | | | | | | | | Assessment methods and criteria | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | | | Assessment of the work performed during the laboratory classes documented with a report | 51.0% | 20.0% | | | | | | | Assessment of the degree of implementation of the electronic circuit project | 51.0% | 20.0% | | | | | | | Final exam (90 min.) | 51.0% | 50.0% | | | | | | | Cost estimate for the purchase of elements for the construction of the designed electronic circuit | 51.0% | 5.0% | | | | | | | Test of knowledge about measuring instruments | 51.0% | 5.0% | | | | | | Recommended reading | Basic literature | A. Chwaleba, B. Moeschke, G. Płoszajski, Elektronika, WSiP, Warszawa, 1999. S. Bolkowski, Elektrotechnika, WSiP, Warszawa, 2006. A. Kloskowski, J. Wawer, Ł. Marcinkowski, Podstawy elektrotechniki i elektroniki, Wyd. Politechniki Gdańskiej, Gdańsk, 2015. W. Opydo, Elektrotechnika i elektronika dla studentów wydziałów nieelektrycznych, Wyd. Politechniki Poznańskiej, Poznań, 2005. Materials published on enauczanie: https://enauczanie.pg.edu.pl/moodle/course/view.php?id=17758 | | | | | | | | Supplementary literature | P. Hempowicz et al., Elektrotechnika i elektronika dla
nieelektryków, WN-T, Warszawa, 1999. P. Horowitz, W. Hill, Sztuka elektroniki 1, WKŁ, Warszawa, 20 M. Polowczyk, A. Jurewicz, Elektronika dla mechaników, Wyd
Politechniki Gdańskiej, Gdańsk 2002. R. Śledziewski, Elektronika dla fizyków, PWN, Warszawa, 198 | | | | | | | | eResources addresses | | | | | | | | Example issues/
example questions/
tasks being completed | Describe and illustrate Kirchhoff's first law. Build an RC low-pass filter and specify its cutoff frequency. | | | | | | | | Work placement | Not applicable | | | | | | | Data wydruku: 20.04.2024 16:05 Strona 2 z 2