Subject card

Subject name and code	Mathematics, PG_00053079						
Field of study	Chemistry						
Date of commencement of studies	October 2020		Academic year of realisation of subject			2020/2021	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	2		ECTS credits			9.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Anita Dabrowicz-Tlałka				
	Teachers		mgr Dorota Garbowska dr Anita Dabrowicz-Tlałka				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	Seminar	SUM
	Number of study hours	45.0	60.0	0.0	0.0	0.0	105
	E-learning hours included: 0.0						
	Adresy na platformie eNauczanie: WCh - Ch - s2, gr.1,2: $2020 / 21$ (D.Garbowska) - Moodle ID: 11677 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=11677 WCh - Ch - s2, gr.1,2: 2020/21 (D.Garbowska) - Moodle ID: 11677 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=11677 WCh - Ch - s2, gr.1,2: 2020/21 (D.Garbowska) - Moodle ID: 11677 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=11677 WCh - Ch - s2, gr.1,2: 2020/21 (D.Garbowska) - Moodle ID: 11677 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=11677						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	105		10.0		110.0	225
Subject objectives	The aim of this subject is to obtain the students competence in the range of using the basic methods of mathematical analysis and linear algebra.Furthermore, the student is able to use this knowledge to solve simple theoretical and practical problems that can be found in the field of engineering.						

Learning outcomes	Course outcome [K6_W01] has basic knowledge of selected areas of mathematics, including: algebra, differential calculus and integral calculus, functions of two variables, elements of analytical geometry, elements of vector analysis, differential equations and probability theory, and knowledge of physics: basic equations and concepts and physical laws, including the knowledge necessary to predict the course of physical phenomena and to solve various technical problems	Subject outcome Student examines the convergence of the number series. Student determines the convergence range of the power series and develops the function into a series. Student defines basic notions of matrix calculus. Student uses basic notions and formulas of matrix calculus in solving systems of linear equations. Student analisies properties of a given function of two variables using differentional calculus of several variables functions. Student uses double and triple integral in geometrical applications. Student determines gradient, divergence and rotation as well as field potential. Student demonstrates some chosen techniques of solving ordinary differential equations. Student gives the definition of basic notions of probability theory. Student describes the basic types of distributions of random variable.	Method of verification [SW1] Assessment of factual knowledge
	[K6_K01] understands the need for lifelong learning, can inspire and organize the process of teaching other people	Student is able to process the acquired information, analyze and interpret it, draw conclusions and reason opinions.	[SK2] Assessment of progress of work
	[K6_U04] can use professional vocabulary, can prepare and communicate technical information in the form of text documents, spreadsheets, charts and technological schema	Student recognizes the importance of skillful use of basic mathematical apparatus in terms of technical study in future.	[SU2] Assessment of ability to analyse information
Subject contents	Number series: Convergent and div Power series: Radius and interval Elements of linear algebra: Matrices square non-singular matrix. Dot pro product and applications. Systems of linear equations. Cramer Capelli theorem. Gaussian elimination Functions of two variables: Limit an differential. Taylors formula. Maxima and minim Multiple integrals: Normal and regu cylindrical and spherical coordinate Elements of field theory: scalar and Ordinary differential equations: Firs with constant coefficients. Calculus of probability - discrete an variance of a random variable.	rgent series. Convergence tests of convergence of series. Developing their properties and operations on duct, cross product, their properties patterns. The rank of the main and method. continuity of a function of several of a function of several variables. area. Double and triple integral. C Examples of applications. vector fields. Gradient, divergence, order linear differential equations. continuous random variable, distrib	the number series. functions in series. matrices. Determinants. Inverse of a and its applications. The triple scalar completed matrix. Kronecker- ariables. Partial derivatives. Total hange of variables - polar, otation. near differential equations order n ution function, expected value and
Prerequisites and co-requisites			

Assessment methods and criteria	Subject passing criteria	Passing threshold \quad Percentage of the final grade
	Tests	50.0\% 40.0%
	Quizzes	50.0\%
	Written exam	50.0\%
Recommended reading	Basic literature	- M. Gewert, Z. Skoczylas : Analiza matematyczna 2, Oficyna Wydawnicza GiS, Wrocław; - K. Jankowska, T. Jankowski : Zadania z matematyki wyższej, Wydawnictwo PG, 2010; - K. Jankowska, T. Jankowski : Funkcje wielu zmiennych - Całki wielokrotne - Geometria analityczna, Wydawnictwo PG, 2010; - K. Jankowska, T. Jankowski : Zadania z matematyki wyższej. Wydawnictwo PG, 2010; - E. Mieloszyk : Macierze, wyznaczniki i układy równań, Wydawnictwo PG, 2000; - M. Bednarczyk, A. Dabrowicz-Tlałka, Wdawnictwo PG, 2016 - A. Zeliaś : Metody statystyczne, Polskie Wydawnictwo Ekonomiczne, Warszawa 2000.
	Supplementary literature	G.M. Fichtenholz : Rachunek różniczkowy i całkowy, t. 2, Wydawnictwo Naukowe PWN W. Krysicki, L. Włodarski : Analiza matematyczna w zadaniach II, Wydawnictwo Naukowe PWN R. Leitner, Zarys matematyki wyższej II, Wydawnictwo NaukowoTechniczne W. Stankiewicz : Zadania z matematyki dla wyższych uczelni technicznych, Wydawnictwo Naukowe PWN
	eResources addresses	WCh - Ch - s2, gr.1,2: 2020/21 (D.Garbowska) - Moodle ID: 11677 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=11677 WCh - Ch - s2, gr.1,2: $2020 / 21$ (D.Garbowska) - Moodle ID: 11677 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=11677 WCh - Ch - s2, gr.1,2: $2020 / 21$ (D.Garbowska) - Moodle ID: 11677 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=11677 WCh - Ch - s2, gr.1,2: 2020/21 (D.Garbowska) - Moodle ID: 11677 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=11677

Example issues/ example questions/ tasks being completed	Examine the convergence of series ... using the appropriate convergence criterion. Expand the given function \qquad in series and designate the radius at which this expansion is true. Discuss the solvability of the given system of equations Find local extrema of the given function $f(x, y)=\ldots$. Calculate the double integral ... over the indicated area D. Using cylindrical or spherical coordinates, calculate the given triple integral ... Determine the potential of the vector field ... Using the prediction method, solve the first and second order linear differential equations. Calculate cumulative distribution function of the given discrete random variable
Work placement	Not applicable

