Subject card

Subject name and code	Physics of semiconductor devices, PG_00037293						
Field of study	Technical Physics						
Date of commencement of studies	October 2020		Academic year of realisation of subject			2022/2023	
Education level	first-cycle studies		Subject group			Optional subject group Subject group related to scientific research in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	3		Language of instruction			Polish	
Semester of study	5		ECTS credits			5.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Department of Physics of Electronic Phenomena -> Faculty of Applied Physics and Mathematics						
Name and surname of lecturer (lecturers)	Subject supervisor		dr hab. inż. Jędrzej Szmytkowski				
	Teachers		dr hab. inż. Jędrzej Szmytkowski				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	Seminar	SUM
	Number of study hours	30.0	30.0	0.0	0.0	0.0	60
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	60		5.0		60.0	125
Subject objectives	The aim of this course is to understand fundamental physics of semiconductors and devices based on semiconductors.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	K6_W07		Student knows how semiconductor devices work.			[SW1] Assessment of factual knowledge	
	K6_W02		The knowledge allows to analyze problems which concern semiconductors and devices based on them.			[SW1] Assessment of factual knowledge	
	K6_U01		Student knows how to use literature about semiconductors and devices based on them			[SU2] Assessment of ability to analyse information	
Subject contents	Introduction to solid state physics (structure of crystalline solids, types of chemical bonds in solids, phonons, Fermi-Dirac and Bose-Einstein statistics, Fermi level in metals, electrical conduction in metals, band structure of solids, effective mass). Introduction to semiconductors (electronic hole, Fermi level in semiconductors, direct and indirect energy gap, equilibrium concentration, intrinsic and extrinsic semiconductors, donors and acceptors, generation and recombination of charge carriers, Hall effect, p-n junction). Introduction to semiconductor electrodynamics (mobility of carries, drift and diffusion equations, Poisson equation, continuity equation, space charge, dielectric relaxation, ambipolar transport equation, Shockley equation). Semiconductor devices (photoresistor, Hall effect sensor, magnetoresistor, thermistor, varistor, p-n diode, varicap, Zener diode, tunnel (Esaki) diode, Schottky diode, photovoltaic cell, photodiode, electroluminescence diode (LED), laser diode, bipolar junction transistor, field effect transistor JFET, field effect transistor MOSFET, thyristor). Thermionic effects in semiconductor devices. MOS capacitor, chargecoupled device (CCD). Integrated circuits. Semiconductor nanostructures and devices based on them.						
Prerequisites and co-requisites	Completed courses in "Electricity and magnetism" and "Introduction to modern physics"						
Assessment methods and criteria	Subject passing criteria		Passing threshold			Percentage of the final grade	
	Written exam		50.0\%			60.0\%	
	Exercises		50.0\%			40.0\%	

Recommended reading	Basic literature	1. C. Kittel "Introduction to solid state physics", PWN 2. A. van der Ziel "Fundaments of solid state electronics" WNT 3. J. Hennel "Introduction to semiconductor elektronics" WNT
	Supplementary literature	A.K. Jonscher "Fundaments of semiconductor devices" WNT
	eResources addresses	Uzupełniajace Adresy na platformie eNauczanie:
Example issues/ example questions/ tasks being completed	1. Electronic structure of solid states	
	2. Intrinsic and extrinsic semiconductors	
	3. Diode	
	4. Transistor	
	5. Laser diode	
Work placement	Not applicable	

