Subject card

Subject name and code	Applications of mathematical methods in physics and engineering, PG_00037273						
Field of study	Technical Physics						
Date of commencement of studies	October 2020		Academic year of realisation of subject			2022/2023	
Education level	first-cycle studies		Subject group			Optional subject group Subject group related to scientific research in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	3		Language of instruction			Polish	
Semester of study	6		ECTS credits			4.0	
Learning profile	general academic profile		Assessment form			assessment	
Conducting unit	Instytut Fizyki i Informatyki Stosowanej -> Faculty of Applied Physics and Mathematics						
Name and surname of lecturer (lecturers)	Subject supervisor		dr inż. Sebastian Bielski				
	Teachers		dr inż. Sebastian Bielski				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	Seminar	SUM
	Number of study hours	30.0	30.0	0.0	0.0	0.0	60
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	60		5.0		35.0	100
Subject objectives	The aim of the course is to present and to systematize some mathematical objects, definitions or methods as tools that can be used to solve physical problems. Another aim is to develop the skills of solving problems of physics.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	K6_W03		Students learn the following mathematical methods and concepts applied in physics: special functions, Green's function method, integral transform methods, phasor method.			[SW1] Assessment of factual knowledge	
	K6_U02		Students learn some mathematical methods and apply them to solve selected problems concerning mechanics, electrodynamics, heat transfer, quantum mechanics.			[SU1] Assessment of task fulfilment	
	K6_W02		Students combine and apply knowledge of various branches of physics			[SW1] Assessment of factual knowledge	

Subject contents	Lecture and tutorials: 1. Gamma function 2. Orthogonal polynomials 2.1. Gram - Schmidt orthogonalization, Rodrigues formula, generating functions 2.2. Hermite polynomials, harmonic oscillator 2.3. Legendre polynomials, electric potential, associated Legendre functions, spherical harmonics 3. Bessel functions 3.1. Bessel equation, Bessel functions 3.2. Heat transfer in an infinite cylinder, circular membrane problem 3.3. Equations leading to the Bessel equation 3.4. Spherical Bessel functions 3.5. Applications of Bessel functions 4. Green's function method 4.1. 1-D problems 4.2. 3-D problems 5. Complex-valued function of a real variable and its applications (e.g. phasor method, the method of the complex representation of electrical quantities) 6. Integral transform methods 6.1. Fourier transform method 6.2. Laplace transform method		
Prerequisites and co-requisites	basics of differential calculus and integral calculus		
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	exam	50.0\%	100.0\%
Recommended reading	Basic literature	M. Abramowitz, I. A. Stegun, "Handbook of Mathematical Functions" F. W. Byron, R. W. Fuller, "Mathematics of Classical and Quantum Physics" H. W. Wyld, "Mathematical methods for physics"	
	Supplementary literature	Donald A. McQuarrie, Mathematical Methods for Scientists and Engineers, University Science Books, 2003	
	eResources addresses	Adresy na platformie eNauczanie: Zastosowania metod matematycznych w fizyce i technice 2022/23- Moodle ID: 26846 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=26846	
Example issues/ example questions/ tasks being completed	Apply the GramSchmidt orthonormalization method to the functions $\left\{x _n\right\}, n=0,1,2, \ldots$ on the interval [1; 1] with the weighting function $(x)=1$. Find eigenvalues and normalized eigenfunctions of the 1D harmonic oscillator subjected to a constant external force F. Prove that the spherical harmonics are the eigenfunctions of the square of the angular momentum operator. Determine the general solution to the differential equation describing the motion of a pendulum which length is a linear function of time. Calculate the sum of two currents $\mathrm{i} 1(\mathrm{t})=3 \cos (157 \mathrm{t}+\mathrm{pi} / 4)$ and $\mathrm{i} 2(\mathrm{t})=-4 \cos (157 \mathrm{t}-\mathrm{pi} / 4)$		
Work placement	Not applicable		

