Subject card | Subject name and code | Mathematics 2, PG_00041996 | | | | | | | | |---|--|--|---|-------------------------------------|--------|--|---------|-----| | Field of study | Power Engineering, Power Engineering, Power Engineering, Power Engineering, Power Engineering | | | | | | | | | Date of commencement of studies | October 2020 | | Academic year of realisation of subject | | | 2020/2021 | | | | Education level | first-cycle studies | | Subject group | | | Obligatory subject group in the field of study | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | Year of study | 1 | | Language of instruction | | | Polish | Polish | | | Semester of study | 2 | | ECTS credits | | 7.0 | | | | | Learning profile | general academic profile | | Assessment form | | exam | | | | | Conducting unit | Mathematics Center -> Vice-Rector for Education | | | | | | | | | Name and surname | Subject supervisor | | Nikodem Mrożek | | | | | | | of lecturer (lecturers) | Teachers | | mgr Danuta Beger | | | | | | | | | mgr Katarzyna Kiepiela | | | | | | | | | | | Nikodem Mrożek | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | Number of study hours | 45.0 | 45.0 | 0.0 | 0.0 | | 0.0 | 90 | | | E-learning hours included: 0.0 | | | | | | | | | | Adresy na platformie eNauczanie: | | | | | | | | | | EN – matematyka 2 sem. 2020/21 (N.Mrożek) - Moodle ID: 13750 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=13750 | | | | | | | | | | Additional information: | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in didactic classes included in study plan | | Participation in consultation hours | | Self-study | | SUM | | | Number of study hours | 90 | | 9.0 | | 76.0 | | 175 | | Subject objectives | Student obtains competence in the range of using methods of mathematical analysis and linear algebra and skills to solve simple problems that can be found in the field of enginering. | | | | | | | | Data wydruku: 19.04.2024 22:50 Strona 1 z 4 | Learning outcomes | Course outcome | Subject outcome | Method of verification | | |-------------------|----------------|---|---|--| | | | Student recognizes the importance of self-expanding knowledge and takes the challenge of working with a group to solve a problem. Student understands the need of lifelong learning. Student is able to inspire others and organize their learning process. | [SK4] Assessment of
communication skills, including
language correctness
[SK3] Assessment of ability to
organize work | | Data wydruku: 19.04.2024 22:50 Strona 2 z 4 | Course outcome | Subject outcome | Method of verification | |----------------|---|---| | K6_W01 | Student performs calculations on | [SW2] Assessment of knowledge | | | complex numbers Student determines the real and complex | contained in presentation [SW1] Assessment of factual | | | roots of polynomials | knowledge | | | Student examines complex functions. Student knows the | | | | definition of the derivative of | | | | complex function. Student determines the real and | | | | imaginary parts of functions of a | | | | complex variable. Student calculates the integral of | | | | complex function. Student knows | | | | the fundamental theorems for | | | | sequences and series of complex terms. Student evaluates limits of | | | | a function of two variables. | | | | Student calculates partial derivatives of a function of two | | | | variables. Student analyses | | | | properties of a given function of two variables using differential | | | | calculus of multivariable functions. | | | | Student examines functions of several variables, using the | | | | concept of a limit, continuity and | | | | derivatives. Student determines local and | | | | global extrema of functions of | | | | several variables. Students calculates double | | | | integrals, and explains the method | | | | of substitution in the double integral. Student applies double | | | | integrals to solving geometrical | | | | problems. | | | | Student calculates triple integrals, and explains the method of | | | | substitution in the triple integral. | | | | Student uses triple integrals in geometrical problems. Student | | | | determines the Fourier series of a | | | | given function (or periodic function). Student demonstrates | | | | some techniques for solving | | | | ordinary differential equations. Student determines general and | | | | particular solutions of certain | | | | types of the first-order differential equations. Students finds the right | | | | method for solving ordinary | | | | differential equations. Student determines fundamental | | | | set of solutions of the | | | | homogeneous linear equation of order n with constant coefficients. | | | | Student determines general and | | | | particular solutions of higher orders linear differential equations | | | | with constant coefficients. Student | | | | determines general and particular solutions of systems of differential | | | | linear equations. Student | | | | determines general and particular solutions of a first-order partial | | | | linear differential equations. | | | | Student calculates line integrals. | | | | Student distinguishes types of line integrals and applies appropriate | | | | methods to calculate them. | | | | Student presents the application of line integrals. | | | | Student calculates surface | | | | integrals. Student uses mathematical | | | | packages to perform calculations | | | | and visualization of mathematical concepts. | | | | 1 | | Data wydruku: 19.04.2024 22:50 Strona 3 z 4 | Subject contents | | | | | | | |--|---|---|-------------------------------|--|--|--| | Subject contents | Integral calculus of functions of one variable | | | | | | | | Definite integrals and their applications. Improper integrals. Complex numbers. | | | | | | | | Complex numbers Algebraic, trigonometric and exponential form of a complex number Operations on complex numbers | | | | | | | | Fourier series | | | | | | | | Information of Fourier series. | | | | | | | | Ordinary differential equations | | | | | | | | Ordinary first order differential equations Higher order linear differential equations with constant coefficients. Systems of linear differential equations . Integral calculus of functions of several variable Functions of two variables. The differential calculus. The double and triple integrals. Line integral of a scalar field, line integral of a vector field Surface integral, flux integral Complex analysis | The basic complex functions. Derivation of a complex function. Conformal maps. Taylor's and Laurent's series. Residue. Integral of a complex function. | | | | | | | | Partial differential equations | | | | | | | | Information of the partial differential equations. | | | | | | | Prerequisites and co-requisites | | | | | | | | Assessment methods and criteria | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | and Chteria | Exam Midterm colloquium | 50.0% | 40.0%
60.0% | | | | | Recommended reading | Basic literature | Bibliography | | | | | | | | Leja F., Rachunek różniczkowy i całkowy, PWN Warszawa 1962 Żakowski W., Leksiński W., Matematyka cz. IV, Wydawnictwo
Naukowo-Techniczne, Warszawa, 1971 | | | | | | | Supplementary literature | Supplementary Bibliography | | | | | | | | Fichtenholtz, G. M., Rachunek różniczkowy i całkowy, t. 1-2, PWN Warszawa 1962 Jankowska K., Jankowski T., Zbiór zadań z matematyki, Wydawnictwo PG Gdańsk 1998 Krysicki W., Włodarski L., Analiza matematyczna w zadaniach, cz. II, PWN Warszawa 1994 Pogorzelski W., Analiza matematyczna, t. 2-3, PWN Warszawa 1956 | | | | | | | eResources addresses | EN – matematyka 2 sem. 2020/21 (N.Mrożek) - Moodle ID: 13750 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=13750 | | | | | | Example issues/
example questions/
tasks being completed | Solve the given differetial equation of the first order (example of Brenolli equation). Solve the given differetial equation of the second order. Find the extremum of the given function of the two variables. Find the volumes of the given solids by means of double integral (or by means of triple integral). Find the line integral to arc lenth (or with respect to coordinates). Find the integral the complex function. | | | | | | | Work placement | Not applicable | | | | | | Data wydruku: 19.04.2024 22:50 Strona 4 z 4