Subject card

Subject name and code	Mathematics 2, PG_00042017						
Field of study	Power Engineering, Power Engineering, Power Engineering, Power Engineering, Power Engineering						
Date of commencement of studies	October 2020		Academic year of realisation of subject			2020/2021	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			English	
Semester of study	2		ECTS credits			6.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr inż. Magdalena Łapińska				
	Teachers		dr inż. Magdalena Łapińska				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	Seminar	SUM
	Number of study hours	45.0	45.0	0.0	0.0	0.0	90
	E-learning hours included: 0.0						
	Adresy na platformie eNauczanie: ET - Mathematics 2 2020/2021 (M.Łapińska) - Moodle ID: 11552 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=11552						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	90		15.0		45.0	150
Subject objectives	Students obtain competence in using methods of mathematical analysis and differential equations, and knowledge how to solve simple problems that are found in the field of engineering.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	K6_U02		The student uses mathematical methods to analyze and design energy elements. Student is able to process the acquired information, analyze and interpret it, draw conclusions and reason opinions.			[SU3] Assessment of ability to use knowledge gained from the subject	
	K6_W01		Student combines knowledge of mathematics with knowledge from other fields.			[SW1] Assessment of factual knowledge	

Subject contents	Improper Integrals Ordinary differential equations Sequences and Series - definitions, monotonicity, - convergence tests Function series: - power Taylor, McLaurin s - information about Fourier Multivariable Calculus - partial derivatives, directio - double and triple integrals Elements of Vector Calculus - line integral over scalar an - information about surface Complex functions - derivatives of complex fun - holomorphic functions - conformal mapping - integrals of complex functi - Taylor and Laurent series	ledness, limits radius of convergence erivatives, applications tor fields rals	
Prerequisites and co-requisites	Working knowledge of the concepts of the first semester of mathematics.		
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Final Exam	50.0\%	50.0\%
	Tests	50.0\%	50.0\%
Recommended reading	Basic literature	George B. Thomas, Jr., Ross L. Finney., Calculus and analytic geometry, Addison-Wesley Publishing Company; 7th edition (January 1988) Z.Michna, Mathematics, 2nd edition, Publishing House of Wrocław University of Economics, Wrocław, 2012.	
	Supplementary literature	M.Gewert, Z.Skoczylas, An Wydawnicza GiS E.Łobos, B.Sikora, Calculu Publishing House of the Si 2006. J.Polking, A.Boggess, D.A	tematyczna II, wzory, Oficyna ferential equations in exercises, The niversity of Technology, Gliwice, ferential Equations, Pearson
	eResources addresses	ET - Mathematics 2 2020/ https://enauczanie.pg.edu	Łapińska) - Moodle ID: 11552 e/course/view.php?id=11552

Example issues/ example questions/ tasks being completed	1. Solve the given differetial equation of the first order (e.g. Brenoulli equation).
2. Solve the given differetial equation of the second order.	
3. Find the extremum of the given function of the two variables.	
4. Find the volumes of the given solids by means of double integral (or by means of triple integral).	
5. Find the line integral	
6. Find the integral of a complex function.	

