

## Subject card

| Subject name and code                       | Technical Thermodynamics 2, PG_00042058                                                                                                                  |                                                          |                                         |                                     |        |                                                                                                                   |              |     |  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|-------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------|--------------|-----|--|
| Field of study                              | Power Engineering, Power Engineering, Power Engineering, Power Engineering, Power Engineering                                                            |                                                          |                                         |                                     |        |                                                                                                                   |              |     |  |
| Date of commencement of studies             | October 2020                                                                                                                                             |                                                          | Academic year of realisation of subject |                                     |        | 2021/2022                                                                                                         |              |     |  |
| Education level                             | first-cycle studies                                                                                                                                      |                                                          | Subject group                           |                                     |        | Obligatory subject group in the field of study Subject group related to scientific research in the field of study |              |     |  |
| Mode of study                               | Full-time studies                                                                                                                                        |                                                          | Mode of delivery                        |                                     |        | at the university                                                                                                 |              |     |  |
| Year of study                               | 2                                                                                                                                                        |                                                          | Language of instruction                 |                                     |        | English                                                                                                           |              |     |  |
| Semester of study                           | 4                                                                                                                                                        |                                                          | ECTS credits                            |                                     |        | 3.0                                                                                                               |              |     |  |
| Learning profile                            | general academic profile                                                                                                                                 |                                                          | Assessment form                         |                                     |        | assessment                                                                                                        |              |     |  |
| Conducting unit                             | Department of Energy and Industrial Apparatus -> Faculty of Mechanical Engineering and Ship Technological                                                |                                                          |                                         |                                     |        |                                                                                                                   | p Technology |     |  |
| Name and surname of lecturer (lecturers)    | Subject supervisor                                                                                                                                       | prof. dr hab. inż. Dariusz Mikielewicz                   |                                         |                                     |        |                                                                                                                   |              |     |  |
|                                             | Teachers                                                                                                                                                 |                                                          | dr inż. Marcin Jewartowski              |                                     |        |                                                                                                                   |              |     |  |
|                                             |                                                                                                                                                          |                                                          | mgr inż. Stanisław Głuch                |                                     |        |                                                                                                                   |              |     |  |
|                                             |                                                                                                                                                          |                                                          | dr hab. inż. Michał Klugmann            |                                     |        |                                                                                                                   |              |     |  |
|                                             |                                                                                                                                                          |                                                          | dr inż. Waldemar Targański              |                                     |        |                                                                                                                   |              |     |  |
|                                             |                                                                                                                                                          |                                                          | prof. dr hab. inż. Dariusz Mikielewicz  |                                     |        |                                                                                                                   |              |     |  |
|                                             |                                                                                                                                                          |                                                          | dr hab. inż. Jacek Barański             |                                     |        |                                                                                                                   |              |     |  |
|                                             |                                                                                                                                                          |                                                          |                                         |                                     |        |                                                                                                                   |              |     |  |
| Lesson types and methods of instruction     | Lesson type                                                                                                                                              | Lecture                                                  | Tutorial                                | Laboratory                          | Projec | t                                                                                                                 | Seminar      | SUM |  |
|                                             | Number of study hours                                                                                                                                    | 15.0                                                     | 0.0                                     | 15.0                                | 0.0    |                                                                                                                   | 0.0          | 30  |  |
|                                             | E-learning hours included: 0.0                                                                                                                           |                                                          |                                         |                                     |        |                                                                                                                   |              |     |  |
|                                             | Adresy na platformie eNauczanie:                                                                                                                         |                                                          |                                         |                                     |        |                                                                                                                   |              |     |  |
| Learning activity and number of study hours | Learning activity                                                                                                                                        | Participation in didactic classes included in study plan |                                         | Participation in consultation hours |        | Self-study                                                                                                        |              | SUM |  |
|                                             | Number of study hours                                                                                                                                    |                                                          |                                         | 5.0                                 |        | 40.0                                                                                                              |              | 75  |  |
| Subject objectives                          | Acquaintance of students with selected topics in thermodynamics such as heat transfer (4h), wet air (4h), Joule-Thompson effect (3h) and combustion (4h) |                                                          |                                         |                                     |        |                                                                                                                   |              |     |  |
| Learning outcomes                           | Course outcome                                                                                                                                           |                                                          | Subject outcome                         |                                     |        | Method of verification                                                                                            |              |     |  |
|                                             |                                                                                                                                                          |                                                          | with 15h of labs should be              |                                     |        | [SU3] Assessment of ability to use knowledge gained from the subject                                              |              |     |  |
|                                             | K6_W02                                                                                                                                                   |                                                          |                                         |                                     |        | [SW1] Assessment of factual knowledge                                                                             |              |     |  |

Data wydruku: 01.05.2024 01:42 Strona 1 z 3

| Subject contents                | Heat transfer - fundamentals of mechanicsm of heat transfer, elementary problems in heat transfer, basics of heat exchangers |                                                                                                                                  |                               |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|
|                                 | Joule-Thompson effect     Wet air - parameters characterising wet air, basic processes of wet air                            |                                                                                                                                  |                               |  |  |  |  |
|                                 |                                                                                                                              |                                                                                                                                  |                               |  |  |  |  |
|                                 | 4. Combustion - stechiometry of combustion, fundamentals of combustion kinetics                                              |                                                                                                                                  |                               |  |  |  |  |
| Prerequisites and co-requisites | Thermodynamics I, Fluid mechan                                                                                               | ics I                                                                                                                            |                               |  |  |  |  |
| Assessment methods              | Subject passing criteria                                                                                                     | Passing threshold                                                                                                                | Percentage of the final grade |  |  |  |  |
| and criteria                    | lab classes                                                                                                                  | 56.0%                                                                                                                            | 0.0%                          |  |  |  |  |
|                                 | written test                                                                                                                 | 56.0%                                                                                                                            | 100.0%                        |  |  |  |  |
| Recommended reading             | Basic literature                                                                                                             | 1. M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey<br>Fundamentals of Engineering Thermodynamics 8 <sup>th</sup> Ec<br>2014 |                               |  |  |  |  |
|                                 |                                                                                                                              | 2. Y. Cengel, M. Boles, Thermodynamics An Engineering<br>Approach, 8 <sup>th</sup> Edition, Wiley, 2014                          |                               |  |  |  |  |
|                                 |                                                                                                                              | 3. Incropera F.P., DeWitt D.P., Bergman T.L., Lavine A.S., Fundamentals Heat Mass Transfer, 7 <sup>th</sup> Edition, 2011.       |                               |  |  |  |  |
|                                 | Supplementary literature                                                                                                     | 1. Pudlik W.: Termodynamika. Wyd. PG, 2011.                                                                                      |                               |  |  |  |  |
|                                 |                                                                                                                              | 2. Wiśniewski S., Wiśniewski T: Termodynamika techniczna. WNT, 2013.                                                             |                               |  |  |  |  |
|                                 | eResources addresses                                                                                                         |                                                                                                                                  |                               |  |  |  |  |

Data wydruku: 01.05.2024 01:42 Strona 2 z 3

| Example issues/       | Present and discuss known mechanisms of heat transfer on the example of overall heat transfer                                                                                                               |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| example questions/    | through a multilayer wall separating two fluids with different temperatures.  2. Define the thermal resistance due to conduction, convection and overall heat transfer.                                     |
| tasks being completed | 3. Discuss how to include the effect of fouling on overall thermal resistance.                                                                                                                              |
|                       | 4. Definition of logarithmic mean temperature difference and temperature distribution in the parallel and                                                                                                   |
|                       | counter-current heat exchangers.  5. Define specific humidity and relative humidity. What is a difference?                                                                                                  |
|                       | 6. What is saturation temperature?                                                                                                                                                                          |
|                       | 7. Construct sample of psychrometric chart. What the lines represent?                                                                                                                                       |
|                       | <ol> <li>Describe graphically on a psychrometric chart all changes in the properties of air</li> <li>The dry-bulb and wet-bulb temperatures in a classroom are 24degC and 16 degC, respectively.</li> </ol> |
|                       | Determine (at psychrometric chart) the humidity ratio, relative humidity and dew point at atmospheric                                                                                                       |
|                       | pressure.                                                                                                                                                                                                   |
|                       | 10. Construction of Psychrometric Chart                                                                                                                                                                     |
|                       | 11. Design and operation of Linde-Hampson liquifier with representation of the process on a thermodynamic                                                                                                   |
|                       | diagram.                                                                                                                                                                                                    |
|                       | 12. Definition of inversion point and inversion curve.                                                                                                                                                      |
|                       | 13. What is the Joule-Thomson effect? The purpose and the coefficient of this effect.                                                                                                                       |
|                       | 14. Definition of combustion process                                                                                                                                                                        |
|                       | 15. The stages of the solid fuel combustion                                                                                                                                                                 |
|                       | 16. The main characteristics of the flames                                                                                                                                                                  |
|                       | 17. Describe what is air excess number and how we can calculate it                                                                                                                                          |
|                       | 18. What is the difference between adiabatic flame temperature and real flame temperature                                                                                                                   |
| Work placement        | Not applicable                                                                                                                                                                                              |

Data wydruku: 01.05.2024 01:42 Strona 3 z 3