Subject card | Subject name and code | Experimental Methods in Strength of Materials, PG_00044005 | | | | | | | | | |---|--|------------------------------------|--|-------------------------------------|--------|--|---------|-----|--| | Field of study | Civil Engineering | | | | | | | | | | Date of commencement of studies | October 2021 | | Academic year of realisation of subject | | | 2022/2023 | | | | | Education level | first-cycle studies | | Subject group | | | Obligatory subject group in the field of study Subject group related to scientific | | | | | | | | | | | research in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 2 | | Language of instruction | | | Polish | | | | | Semester of study | 3 | | ECTS credits | | | 1.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Katedra Wytrzymałości Materiałów -> Faculty of Civil and Environmental Engineering | | | | | | | | | | Name and surname of lecturer (lecturers) | Subject supervisor | prof. dr hab. inż. Magdalena Rucka | | | | | | | | | | Teachers | | dr inż. Erwin Wojtczak | | | | | | | | | | | dr inż. Aleksandra Kuryłowicz-Cudowska | | | | | | | | | | | mgr inż. Błażej Meronk | | | | | | | | | | | dr inż. Łukasz Pachocki | | | | | | | | | | di IIIZ. Lukasz | TITE. EUROSE I GOTTOON | | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | | Number of study hours | 0.0 | 0.0 | 15.0 | 0.0 | | 0.0 | 15 | | | | E-learning hours included: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation i classes including | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 15 | | 2.0 | | 8.0 | | 25 | | | Subject objectives | The purpose of the laboratory is an experimental verification of formulas of strength of materials using model tests. | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | [K6_U03] can analyze simple rod constructions in scope of: calculations of constructions statically determined and undetermined; determining of modal frequencies; calculations of linear stability and bearing capacity in critical and boundary states | | Student solves simple beams, frames and trusses. | | | | | | | | | [K6_W04] has knowledge of general mechanics, strength of materials and general rules of construction | | Student defines differences between the experimental and analytical results and their reasons. Student estimates the application range of the theoretical equations of mechanics of materials. | | | | | | | Data wydruku: 09.04.2024 05:35 Strona 1 z 2 | Subject contents | The following experiments are individually carried out and analysed: | | | | | | | | |--|--|--|--|--|--|--|--|--| | | - tension and compression tests for carbon and hardened steel specimens | | | | | | | | | | - bend tests for steel and aluminium beams having various sections: rectangular, T and channel | | | | | | | | | | - determination of Young modulus and Poisson's ratios for polycarbonate specimens (using strain gauges) | | | | | | | | | | - determination of strains in selected sections for bending polycarbonate beams (T and Z sections) | | | | | | | | | | - torsion angle for thin-walled tubes having closed and open cross sections | | | | | | | | | | - determination of the centre of twist for two thin-walled beams | | | | | | | | | | - measurement of beam displacements | | | | | | | | | | - determination of critical loads for various supported columns | | | | | | | | | | - determination of the shape of a cable | | | | | | | | | Prerequisites and co-requisites | Course Engineering Mechanics should be completed. Course Strength of Materials should be taken. Precondition to the executing of experiments is acquaintance with the Ref. [1]. | | | | | | | | | Assessment methods and criteria | Subject passing criteria Test | Passing threshold 60.0% | Percentage of the final grade 50.0% | | | | | | | | Reports | 60.0% | 50.0% | | | | | | | Recommended reading | Basic literature 1. Chróścielewski J., Rucka M., Witkowski W.: Metody doświadczalr w wytrzymałości materiałów. Wydawnictwo Politechniki Gdańskie Gdańsk, 2018. 2. Banasiak M.: Ćwiczenia laboratoryjne z wytrzymałości materiałów PWN, Warszawa, 2000. 3. Bielewicz E.: Wytrzymałość materiałów, Wydawnictwo Politechnik Gdańskiej, Gdańsk 2006. 4. Boruszak A., Sygulski R., Wrześniowski K.: Wytrzymałość materiałów: doświadczalne metody badań. PWN Warszawa-Poznań, 1984. 5. Burczyński T., Beluch W., John A.: Laboratorium z wytrzymałości materiałów. Wydawnictwo Politechniki Śląskiej, Gliwice, 2002. 6. Górski J., Iwicki P., Mikulski T.: Metody doświadczalne w analizie konstrukcji. Skrypt Politechniki Gdańskiej, Gdańsk, 2008. | | | | | | | | | | Supplementary literature | I, Wydawnictwa Naukowo-Tec
2. Dyląg Z., Jakubowicz A., Orłoś
II, Wydawnictwa Naukowo-Tec
3. Szymczak Cz., Skowronek M., | Dyląg Z., Jakubowicz A., Orłoś Z.: Wytrzymałość materiałów, tom I, Wydawnictwa Naukowo-Techniczne, 2003. Dyląg Z., Jakubowicz A., Orłoś Z.: Wytrzymałość materiałów, tom II, Wydawnictwa Naukowo-Techniczne, 2003. Szymczak Cz., Skowronek M., Witkowski W., Kujawa M.: Wytrzymałość materiałów. Zadania. PG, Gdańsk 2002, 2009. | | | | | | | | eResources addresses | Adresy na platformie eNauczanie: | | | | | | | | Example issues/
example questions/
tasks being completed | Analyse and interpret the obtained experimental results. Compare the results of experiments with theoretical calculations. Perform experimental tests according to the instructions in groups of three. Draw stress diagrams for torsion of an open and closed annular bar. Draw a graph of tensile test for mild and hard steel. | | | | | | | | | Work placement | Not applicable | | | | | | | | Data wydruku: 09.04.2024 05:35 Strona 2 z 2