Subject card

Subject name and code	Mathematics, PG_00048601						
Field of study	Chemistry in Construction Engineering						
Date of commencement of studies	October 2021		Academic year of realisation of subject			2021/2022	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	1		ECTS credits			9.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Anita Dabrowicz-Tlałka				
	Teachers		dr Anita Dabrowicz-Tlałka				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	Seminar	SUM
	Number of study hours	30.0	30.0	0.0	0.0	0.0	60
	E-learning hours included: 0.0						
	Address on the e-learning platform: https://enauczanie.pg.edu.pl/moodle/course/view.php?id=15537 Adresy na platformie eNauczanie:						
	Additional information: The course is informative and supports the achievement of learning outcomes.						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	60		20.0		145.0	225
Subject objectives	Students obtain competence in the range of using methods of mathematical analysis and linear algebra and knowledge how to solve simple problems that can be found in the field of engineering.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	[K6_W01] has a basic knowledge from some branches of mathematics and physics useful for formulating and solving simple problems in the field of environmental technologies and modern analytical methods		Student mentions basic properties of elementary functions. Student solves equations and inequalities with elementary functions. Student gives the definition of basic notions of differential calculus. Student uses basic notions and formulas of differential calculus. Student determines intervals of monotonicity of a given functions and its extrema. Students calculates antiderivatives using the substitution method of integration and integration by parts. Student applies definite integrals to solving geometrical problems. Student performs calculations on complex numbers.			[SW1] Assessment of factual knowledge	
	K6_U02		Student can choose the appropriate data to solve the task and is able to correctly describe solution of the problem by using charts and logically articulated reasoning.			[SU2] Assessment of ability to analyse information [SU4] Assessment of ability to use methods and tools	

Example issues/ example questions/ tasks being completed	1. Find the domain and the set of values of the function $f(x)=\ldots$. Determine the inverse function of f. 2. Check the continuity of the following function $f(x)=$
3. Find local extremes and intervals of monotonicity of the following function $f(x)=$.	
4. Evaluate the indefinite integral of the given rational function .	
5. Give three applications of the definite integral with appropriate rules.	
6. Compute the improper integral or prove its divergence	
7. Solve the equation in a set of complex numbers	

