
Data wydruku: 28.04.2024 08:24 Strona 1 z 3

Subject card

Subject name and code Software engineering, PG_00051071

Field of study Technical Physics

Date of commencement of
studies

October 2021 Academic year of
realisation of subject

2023/2024

Education level first-cycle studies Subject group Optional subject group
Subject group related to scientific
research in the field of study

Mode of study Full-time studies Mode of delivery at the university

Year of study 3 Language of instruction Polish

Semester of study 6 ECTS credits 7.0

Learning profile general academic profile Assessment form assessment

Conducting unit Zakład Fizyki Teoretycznej i Informatyki Kwantowej -> Instytut Fizyki i Informatyki Stosowanej -> Faculty of
Applied Physics and Mathematics

Name and surname
of lecturer (lecturers)

Subject supervisor dr hab. inż. Marta Łabuda
Teachers dr hab. inż. Marta Łabuda

Lesson types and methods
of instruction

Lesson type Lecture Tutorial Laboratory Project Seminar SUM
Number of study
hours

30.0 0.0 0.0 45.0 0.0 75

E-learning hours included: 0.0
Additional information:

Learning activity
and number of study hours

Learning activity Participation in didactic
classes included in study
plan

Participation in
consultation hours

Self-study SUM

Number of study
hours

75 10.0 90.0 175

Subject objectives Student knows, what is specific for software engineering Student knows several models of process
ofdeveloping software Student knows rules of acquiring requirements Student knows, how to model
thesystem using the UML language Student knows the fundamentals of software projects management
Studentknows basic architectures of computer systems.

Learning outcomes Course outcome Subject outcome Method of verification
K6_U02 The student carries out project

tasks related to software
engineering.

[SU1] Assessment of task
fulfilment
[SU2] Assessment of ability to
analyse information

K6_U03 The student knows different
programming languages, tools
and
modern technologies
supporting design and architecture
of the IT systems

[SU1] Assessment of task
fulfilment

K6_W05 The student knows what is
software engineering. The student
knows different models of
software development. The
student knows the rules of
collecting and
documenting requirements for the
IT systems.
The student is able to model the
system
using UML language.
The student knows the basics of
the
management of IT project.
The student knows the basics of
IT architecture.

[SW3] Assessment of knowledge
contained in written work and
projects

Data wydruku: 28.04.2024 08:24 Strona 2 z 3

Subject contents LECTURE

1. Introduction to software engineering. Properties of computer systems engineering. Systems and their
environments. Conceptual modeling of the system.

2. Project planning. IT project: basic characteristics, concepts, project stakeholders; life cycle and scope of
the project. Task scheduling. Problem identification. Rich Picture. Strategic decisions and vision of the
solution.

3. Feasibility of an IT project. Objectives, assessment levels technical, economic, organizational and legal;
venture risk.

4. Definition and analysis of requirements for the system. Requirements engineering process. Software
requirements and documentation. Features of a good requirement. Methods of obtaining requirements.
Division and classification of requirements. Approval of requirements and their management.

5. IT project strategies and processes; traditional (cascade model, V model, prototyping, incremental, spiral)
and modern software development cycles (reuse and component), MDA, reengineering.

6. Agile software development methodologies. Extreme programming. SCRUM: processes, artifacts, roles.
Selection of project management strategy.

7. UML language. CASE Tools

8. Architectural design: presentation of the concept of software architecture and architectural
design.Structuring of the system, control models, the distribution of the modules, the architecture
characteristic ofthe various fields. Architecture of distributed systems. Multiprocessing architecture, client-
server, distributed objects.

9. Designing Object: presentation of an approach to software in which the project has the structure of
interacting objects. Objects and object classes, object-oriented design processes, the evolution of the project.

10. Optimization of the design for the specificity of the software. Design distributed, mission-critical, real-time
and reusable systems. System control for data collection.

11. Outsourcing in software engineering.

LABORATORY: As part of the laboratory, students perform exercises that make up the basic steps for
identification and analysis of requirements and object modeling using CASE tools and UML. The purpose of
exercises is to gain the students practical skills in conceptual models and tools supporting design. Work
takes place in teams. Each group performs a set of exercises in relation to their choice. The result is a
complete system documentation, design of the project and(possibly) an outline of its implementation.

Prerequisites
and co-requisites

None

Assessment methods
and criteria

Subject passing criteria Passing threshold Percentage of the final grade
Tests 50.0% 15.0%
Tasks 50.0% 85.0%

Recommended reading Basic literature 1. Sommerville I.: Inżynieria oprogramowania, WNT, 2003

2. Inżynieria oprogramowania w projekcie informatycznym, red. J.
Górski, MIKOM, 2000

3. Booch G,. Rumbaugh J., Jacobson I.: UML przewodnik użytkownika,
WNT 2002

Data wydruku: 28.04.2024 08:24 Strona 3 z 3

Supplementary literature 1. Subieta K.: Wprowadzenie do inżynierii oprogramowania, PJWSTK,
2002

2. Jaszkiewicz A.: Inżynieria oprogramowania, Helion, 2000

3. BrooksF. P.: Eseje o inżynierii oprogramowania, WNT, 2000

eResources addresses Adresy na platformie eNauczanie:
Inżynieria oprogramowania 2024 - Moodle ID: 38315
https://enauczanie.pg.edu.pl/moodle/course/view.php?id=38315

Example issues/
example questions/
tasks being completed

1. Software development processes.
2. Engineering requirements.
3. Agile software development methodology.
4. Extreme Programming.
5. Programming project management.
6. Object-oriented design.
7. UML.
8. Cost Estimating Software
9. Architectural design.
10. Design of distributed systems.
11. Design of real-time systems.
12. Critical Systems.
13. Design with reuse.
14. Design patterns

Work placement Not applicable

