Subject card

Subject name and code	Specialization seminar, PG_00049172						
Field of study	Mathematics						
Date of commencement of studies	October 2021		Academic year of realisation of subject			2023/2024	
Education level	first-cycle studies		Subject group			Optional subject group Subject group related to scientific research in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	3		Language of instruction			Polish	
Semester of study	6		ECTS credits			3.0	
Learning profile	general academic profile		Assessment form			assessment	
Conducting unit	Zakład Analizy Nieliniowej -> Instytut Matematyki Stosowanej -> Faculty of Applied Physics and Mathematics						
Name and surname of lecturer (lecturers)	Subject supervisor		dr inż. Marcin Styborski				
	Teachers		dr inż. Marcin Styborski dr hab. Piotr Bartłomiejczyk				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	Seminar	SUM
	Number of study hours	0.0	0.0	0.0	0.0	30.0	30
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	30		5.0		40.0	75
Subject objectives	The aim of the course is to develop exam questions for the diploma exam and to prepare students to present the results of their own work.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	K6_U12		The student knows the basics of statistical reasoning and is able to apply it to the studied issues in other fields of science			[SU5] Assessment of ability to present the results of task [SU4] Assessment of ability to use methods and tools	
	K6_W04		The student knows the basic theorems regarding issues from the list of questions for the diploma exam			[SW3] Assessment of knowledge contained in written work and projects [SW2] Assessment of knowledge contained in presentation	
	K6_K01		The student is able to prepare a presentation of the results of his or her own work			[SK2] Assessment of progress of work [SK5] Assessment of ability to solve problems that arise in practice	
	K6_W05		The student is able to use basic mathematical concepts in the scope of the subject of work.			[SW3] Assessment of knowledge contained in written work and projects [SW2] Assessment of knowledge contained in presentation	
	K6_K04		The student is able to answer questions from the list of questions for the diploma exam			[SK4] Assessment of communication skills, including language correctness	
Subject contents	- Exam questio - Exam questio	$\begin{aligned} & \text { 1st degre } \\ & , 1 \text { st degre } \end{aligned}$	thematics, g thematics, s	eral questions cialization ques	stions		

Prerequisites and co-requisites	Knowledge needed to prepare a specialty project. Knowledge of basic concepts from first-cycle studies enabling understanding of other speakers' presentations.		
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
		0.0\%	50.0\%
		0.0\%	50.0\%
Recommended reading	Basic literature	Free choice	
	Supplementary literature	Free choice	
	eResources addresses	Adresy na platformie eNauczanie: Seminarium specjalnościowe - matematyka finansowa lato 2023/24Moodle ID: 38539 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=38539	
Example issues/ example questions/ tasks being completed	- The implicit function, the implicit function theorem and the extrema of the implicit function. - Integration of functions of many variables - iterated integrals, conversion of variables (polar, spherical and cylindrical coordinates). - Green's, Gauss-Ostrogradski's and Stokes' theorems. - Principle of mathematical induction. Application example. - Definition of relations, equivalence relations and abstraction classes, order relations and their distinguished elements. - The concept of equality and power of sets. Examples of countable and uncountable sets.		
Work placement	Not applicable		

