Subject card

Subject name and code	Mathematics II, PG_00050294						
Field of study	Mechanical Engineering						
Date of commencement of studies	October 2021		Academic year of realisation of subject			2021/2022	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study	
Mode of study	Part-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	2		ECTS credits			6.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Leszek Ziemczonek				
	Teachers		dr Leszek Ziemczonek				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	Seminar	SUM
	Number of study hours	30.0	30.0	0.0	0.0	0.0	60
	E-learning hours included: 0.0						
	Adresy na platformie eNauczanie: WIMiO - MiBM n.stac. - Matematyka II 2021/22 (L.Ziemczonek) - Moodle ID: 16486 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=16486						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	60		9.0		81.0	150
Subject objectives	The aim of this subject is to obtain the students competence in the range of using the basic methods of mathematical analysis and linear algebra. Furthermore, the student is able to use this knowledge to solve simple theoretical and practical problems that can be found in the field of engineering.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	[K6_U01] is able to acquire information from specialized literary sources, databases and other resources, essential for solving engineering tasks; is able to compile the obtained information pieces and to interpret them, additionally is able to form conclusions and present justified opinion		Student is able to process the acquired information, analyze and interpret it, draw conclusions and reason opinions.			[SU2] Assessment of ability to analyse information [SU3] Assessment of ability to use knowledge gained from the subject	
	[K6_W01] possesses mathematical knowledge within the range of linear algebra and mathematical analysis useful in characterising and interpreting mechanical systems, technological processes and operational properties of devices		Student recognizes the importance of skillful use of basic mathematical apparatus in terms of study in the future.			[SW3] Assessment of knowledge contained in written work and projects [SW1] Assessment of factual knowledge	

Subject contents	Antiderivative (primitive). The process of finding antideriv integration by parts. Integration of rational, trigonom Newton-Leibniz Thorem. Integration formulas, the substit Improper integrals. Applications of integral calculus revolution. Functions of two variables. Par Double integrals and their appl	s and integration formulas and irrational functions. method of integration and in omputing areas of plane figu erivatives. Differential of func ns. Areas of flat regions. Volum	tution method of integration and n by parts for definite integrals. ths of arcs, volumes of solids of trema of function. solids. Area of a piece of surface.
Prerequisites and co-requisites	Knowledge of differential calculus of one variable functions.		
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	midterm colloquium	50.0\%	50.0\%
	written exam	50.0\%	50.0\%
Recommended reading	Basic literature	1) Jankowska K., Jankowsk 2009. 2) Jankowska K., Jankowsk wielokrotne, geometria ana 3) Gewert M., Skoczylas Z. zadania, Wrocław, 2003. 4) Gewert M., Skoczylas Z. zadania, Wrocław, 2003.	ór zadań z matematyki, Gdańsk, kcje wielu zmiennych, całki Wyd. PG, Gdańsk, 2006. matematyczna 1. Przykłady i matematyczna 2. Przykłady i
	Supplementary literature	1) Krysicki W., Włodarski L. Warszawa, 1997. 2) Krysicki W., Włodarski L II, Warszawa, 1994. 3) Fichtenholz G. M.: Rach Warszawa, 1995. 4) Leitner R.: Zarys matem WNT, Warszawa, 1994. 5) Żakowski W., Kołodziej 1992.	a matematyczna w zadaniach. Cz a matematyczna w zadaniach. Cz żniczkowy i całkowy. PWN, ższej dla studiów technicznych. matyka cz. II. WNT, Warszawa,

	eResources addresses	WIMiO - MiBM n.stac. - Matematyka II 2021/22 (L.Ziemczonek) - Moodle ID: 16486 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=16486
Example issues/ example questions/ tasks being completed	1) Using the definite integral, determine the area of the area between the graphs of the curves ...	
	2) Find local extremes of functions of two variables ...	
3) Use the double integral to calculate the volume of a solid bounded by areas		
Work placement	Not applicable	

