

Subject card

Subject name and code	Algorithms and Data Structures, PG_00047652							
Field of study	Informatics							
Date of commencement of studies	October 2021		Academic year of realisation of subject		2021/2022			
Education level	first-cycle studies		Subject group		Obligatory subject group in the field of study			
Mode of study	Full-time studies		Mode of delivery		at the university			
Year of study	1		Language of instruction		Polish			
Semester of study	2		ECTS credits		5.0			
Learning profile	general academic profile		Assessment form		exam			
Conducting unit	Department of Algorithms and Systems Modelling -> Faculty of Electronics, Telecommunications and Informatics							
Name and surname of lecturer (lecturers)	Subject supervisor		dr inż. Krzysztof Manuszewski					
	Teachers		dr inż. Krzysztof Manuszewski					
			mgr inż. Tomasz Goluch					
			dr Marcin Jurkiewicz					
			dr inż. Tytus Pikies					
			mgr inż. Kacper Wereszko					
		mgr inż. Robert Ostrowski						
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Project		Seminar	SUM
	Number of study hours	30.0	0.0	15.0	15.0		0.0	60
	E-learning hours included: 0.0							
	Adresy na platformie eNauczanie:							
Learning activity and number of study hours	Learning activity	activity Participation in classes include plan				Self-study		SUM
	Number of study hours	60		5.0		60.0		125
Subject objectives	Major goal is introduction basic data structures tables, balanced tree construction of algori	and basic algo s, B-trees and j	rithms from vai	rious domains.	Present	ted are	tree data str	uctures, hash

Data wydruku: 19.05.2024 14:27 Strona 1 z 3

Learning outcomes	Course outcome	Subject outcome	Method of verification	
	[K6_W41] Knows and understands, to an advanced extent, the operation and evaluation criteria of data processing, storage and transfer methods, including computational algorithms, artificial intelligence and data mining	student understands how to evaluate algorithm and has understanding the complexity idea. Student knows basic data structures and algorithms. Student knows the basic methods for algorithms construction	[SW1] Assessment of factual knowledge	
	[K6_U01] can apply mathematical knowledge to formulate and solve complex and non-typical problems related to the field of study and perform tasks, in an innovative way, in not entirely predictable conditions, by:n- appropriate selection of sources and information obtained from them, assessment, critical analysis and synthesis of this information,n-selection and application of appropriate methods and toolsn	Student knows the idea of precise and approximated algorithm. Student is able to adapt algorithm to the problem constraints	[SU1] Assessment of task fulfilment	
	[K6_U04] can apply knowledge of programming methods and techniques as well as select and apply appropriate programming methods and tools in computer software development or programming devices or controllers using microprocessors or programmable elements or systems specific to the field of study	knowledge about basic data structures and dedicated algorithms, ability to understanding and implementation algorithms of various complexity,	[SU1] Assessment of task fulfilment	
	[K6_U09] can carry out a critical analysis of the functioning of existing technical solutions and assess these solutions, as well as apply experience related to the maintenance of technical systems, devices and facilities typical for the field of studies, gained in the professional engineering environment	skills in areas of problem analysis and model creation,	[SU1] Assessment of task fulfilment	
	[K6_U43] can analyse date and formulate, apply and assess appropriate formal models and algorithms for solving problems in the field of information systems and applications	knowledge about basic data structures, ability to understanding and implementation algorithms of various complexity,	[SU1] Assessment of task fulfilment	

Data wydruku: 19.05.2024 14:27 Strona 2 z 3

Subject contents	Schema of problem solution: analysis of situation and analysis of goal, impact of model on solution					
	Algorithmic problems, algorithms notation, analysis, correctness, stop,					
	Estimation of function growth, O notation, time vs. complexity					
	Examples if recursion/iteration, recursive and iterative algorithms					
	Brute-force method, heuristic method, Dynamic programming					
	Examples of recursion for algorithm	s based on strategy divide and cor	ivide and conquer			
	Basic data structures (list, queue, stack) and methods of their realization					
	Simple sorting algorithms: insertion,	selection, change. Binary search	ection, change. Binary search			
	Sorting algorithms based on strategy divide and conquer Heap sort, Bucket sort and positional sort, , Search for <i>k</i> -th minimal element					
	Adressing and hashing functions, To	rees and algorithms for trees: BFS	algorithms for trees: BFS, DFS, Elementary graph algorithms			
	Binary search trees, priority queues, "Red-black" trees, B-Trees,					
	Graph representation, the shortest path in graphs: Dijkstra, Spanning tree in graphs: Prim and Kruskal algorithms					
Prerequisites and co-requisites	Knowledge about fundamentals of programming					
Assessment methods		T 5				
and criteria	Subject passing criteria	Passing threshold 40.0%	Percentage of the final grade 33.0%			
		40.0%	33.0%			
		40.0%	34.0%			
Pocommended reading	Basic literature					
Recommended reading	Supplementary literature	T. Cormen, Introduction to algorithms, MIT 1994 http://www.algorytm.org/				
	eResources addresses					
Example issues/ example questions/ tasks being completed		d recursive approaches, implementation of simple sorting methods, hash				
	PROJ: Implementation ONP based calculator for string operations. implementation MInimax for simplementation on the string operations of the string operations.					
Work placement	Not applicable					

Data wydruku: 19.05.2024 14:27 Strona 3 z 3