Subject card

Subject name and code	Discrete Mathematics, PG_00047646						
Field of study	Informatics						
Date of commencement of studies	October 2021		Academic year of realisation of subject			2021/2022	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	2		ECTS credits			4.0	
Learning profile	general academic profile		Assessment form			assessment	
Conducting unit	Department of Algorithms and Systems Modelling -> Faculty of Electronics, Telecommunications and Informatics						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Paweł Obszarski				
	Teachers		mgr inż. Robert Ostrowski mgr inż. Andrzej Jastrzębski dr Paweł Obszarski dr inż. Joanna Raczek				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Project	Seminar	SUM
	Number of study hours	30.0	30.0	0.0	0.0	0.0	60
	E-learning hours included: 0.0						
	Adresy na platformie eNauczanie: Matematyka Dyskretna (Discrete Mathematics) Lato 2022 - Moodle ID: 21973 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=21973						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	60		3.0		37.0	100
Subject objectives	Obtaining skills in formulating thesis using formal mathematical language. Ability of expressing relations, dependencies and configurations in a strict abstract form. Understanding clue of reasoning and proofs construction.						

Learning outcomes	Course outcome	Subject outcome	Method of verification
	[K6_W41] Knows and understands, to an advanced extent, the operation and evaluation criteria of data processing, storage and transfer methods, including computational algorithms, artificial intelligence and data mining	Understands elements of graph theory and combinatorics crucial in data analysis.	[SW1] Assessment of factual knowledge
	[K6_K02] is ready to critically assess possessed knowledge and acknowledge the importance of knowledge in solving cognitive and practical problems	Learns about various mathematical models and how to use them in practice.	[SK5] Assessment of ability to solve problems that arise in practice [SK2] Assessment of progress of work
	[K6_W01] Knows and understands, to an advanced extent, mathematics necessary to formulate and solve simple issues related to the field of study	Knows numerous algorithmic issues from set theory, combinatorics and graph theory.	[SW1] Assessment of factual knowledge
	[K6_U01] can apply mathematical knowledge to formulate and solve complex and non-typical problems related to the field of study and perform tasks, in an innovative way, in not entirely predictable conditions, by:n- appropriate selection of sources and information obtained from them, assessment, critical analysis and synthesis of this information,nselection and application of appropriate methods and toolsn	Knows how to use in practice knowledge from graph theory, set theory and others.	[SU4] Assessment of ability to use methods and tools
Subject contents	Algebra of sets. Propositional calculus. Predicate calculus. Mathematical Induction. Binary relations: equivalence relations, the principle of abstraction, cleanup, closure transitive and equivalence. Counting and generating combinatorial objects (functions, locations, divisions - the number of Stirling). Congruence arithmetic modulo n (the Chinese remainder theorem, Fermat, Euclid's algorithm, the government element in the multiplicative group modulo n). Graph theory - notation, basic concepts, eulerian graphs, the problem of the Chinese postman, hamiltonian graphs, the traveling salesman problem, ownership of trees, planarity. Coloring graphs. Asymptotic of numeric functions - symbols O () with (). Recursive relationships - methods: guessing disturbing, "complicate and simplify" generating functions.		
Prerequisites and co-requisites			
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Test 1.	50.0\%	45.0\%
	Classes activity	0.0\%	10.0\%
	Test 2	50.0\%	45.0\%
Recommended reading	Basic literature	[1] K. A. Ross, C. R. B. Wright, Ma Warszawa 1996. [2] R. L. Graham, D. E. Knuth, O. PWN, Warszawa 1996.	matyka dyskretna, PWN, atashnik, Matematyka konkretna,
	Supplementary literature	[3] W. Lipski, W. Marek, Analiza k 1986. [4] H. Rasiowa, Wstęp do matema 1984. [5] Robin J. Wilson, Wprowadzenie 2000.	mbinatoryczna, PWN, Warszawa ki współczesnej, PWN, Warszawa do teorii grafów, PWN, Warszawa
	eResources addresses	Matematyka Dyskretna (Discrete 21973 https://enauczanie.pg.edu.pl/mood	athematics) Lato 2022 - Moodle ID: e/course/view.php?id=21973
Example issues/ example questions/ tasks being completed	Data are n balls, each of which weighs 10 g , except for one that weighs 9 g or 11 g using k weighing (weight balance) must decide which ball has a different weight, and whether it is lighter or heavier from the other. Determine the maximum value which n can assume at a given angle as a function $f(k)$. Introduce weighting algorithm for any k and $\mathrm{n}=\mathrm{f}(\mathrm{k})$.		
Work placement	Not applicable		

