Subject card | Subject name and code | , PG_00056421 | | | | | | | | | |---|---|-----------------------------------|---|-------------------------------------|---------|---|---------|-----|--| | Field of study | Ocean Engineering | | | | | | | | | | Date of commencement of studies | October 2021 | | Academic year of realisation of subject | | | 2022/2023 | | | | | Education level | first-cycle studies | | Subject group | | | Obligatory subject group in the field of study Subject group related to scientific research in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 2 | | Language of instruction | | | Polish | | | | | Semester of study | 3 | | ECTS credits | | | 11.0 | | | | | Learning profile | general academic profile | | Assessment form | | | exam | | | | | Conducting unit | Faculty of Ocean Engineering and Ship Technology | | | | | | | | | | Name and surname | Subject supervisor dr hab. inż. Tomasz Mikulski | | | | | | | | | | of lecturer (lecturers) | Teachers | | dr inż. Jakub Kowalski | | | | | | | | | | | mgr inż. Paweł Bielski | | | | | | | | | | | mgr inż. Olga Kazimierska | | | | | | | | | | | dr hab. inż. Tomasz Mikulski | dr inż. Michał Krężelewski | | | | | | | | | | mgr inż. Leszek Samson | | | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Project | t | Seminar | SUM | | | | Number of study hours | 60.0 | 45.0 15.0 0.0 | | | 0.0 | 120 | | | | | E-learning hours included: 0.0 | | | | | | | | | | | Additional information: Lectures, exercises and laboratories are conducted in the system of full-time education. | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation i classes including | n didactic | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 120 | | 15.0 | | 140.0 | | 275 | | | Subject objectives | The aim of the course is to provide theoretical foundations of mechanics and strength regimes of one-dimensional structures (rods, beams). Student after the course should be able to: - determine the distributions of internal forces and moments - determine the stress distribution, - calculate the displacements of one-dimensional structures, - indicate the place of the greatest material effort at typical structure loads, - calculate the effort of material using a variety of strength material hypothesis. | | | | | | | | | Data wydruku: 11.04.2024 01:48 Strona 1 z 2 | Learning outcomes | Course outcome | Subject outcome | Mothod of varification | | | | |--|--|---|--|--|--|--| | Loanning Gatoomics | [K6_W02] has a basic knowledge in physics, including technical mechanics, fluid mechanics, solid-state physics, optics and acoustics necessary to understand basic physical phenomena occurring in ocean technology | The student has acquired the ability to solve technical problems based on the laws of mechanics and basic material strength analysis. | Method of verification [SW1] Assessment of factual knowledge [SW3] Assessment of knowledge contained in written work and projects | | | | | | [K6_U02] can work individually and in a team, communicate through various techniques in professional environment and also record, analyse, and present the results of work, can estimate the time needed to complete a given task | The student is able to perform strength analyzes of elements of structural systems and ship devices. | [SU2] Assessment of ability to
analyse information
[SU3] Assessment of ability to
use knowledge gained from the
subject
[SU4] Assessment of ability to
use methods and tools | | | | | Subject contents | Basics assumptions and description of the Strength of Materials problems. State of stress and strain: general state of stress and strains, plane stress and plane strain states. Physical relationships between stresses and strains. Hooke's law. Axial tension and compression of the rod. The internal forces. Statically determinate structures: beams, trusses and frames,frame-truss systems. Cross-sectional axial forces, shear forces, bending moments, torsional moments. Moments of inertia of plane figures. Bending of beams. Torsion of monolithic and thin-walled bars. Eccentric tension (compression) of the bar. Shear stresses in bending problems. Bending line of beam. Euler's equation. Buckling of axially compressed rods. Strength hypothesises. Complex stress problems. Vibrations of a system with one degree of freedom: free and forced vibrations. The phenomenon of resonance, vibration damping. Introduction to vibrations of systems with many degrees of freedom. | | | | | | | Prerequisites and co-requisites | The student has passed the following subjects: - Technique Mechanic I | | | | | | | Assessment methods and criteria | Subject passing criteria exam laboratory | Passing threshold 50.0% 50.0% 50.0% | Percentage of the final grade 30.0% 20.0% 50.0% | | | | | Recommended reading | Exercise Basic literature Supplementary literature | Hibbeler R.G.: Mechanics of materials, Prentice-Hall Int. Inc., 1994, ISBN 0-13-207028-6 Hibbeler R.G.: Statics and mechanics of materials, Prentice-Hall Int. Inc., ISBN 0023540915 Crayg Roy. R, Jr.: Mechanics of materials, John Willey & Sons, 1996, ISBN 0-471-50284-7 Beer F.P., Johnston E.R.: Mechanics of materials, Mc Graw-Hill Book Company, ISBN 0-07-004284-5 Ugural A.C., Fenster S.K.: Advanced Strength and Applied Elasticity, 1995, ISBN 0-13-137589-X Muvdi B.B., McNabb J.W.: Egineering Mechanics of Materials, Macmillan Publ. Comp. 1984, ISBN 0-02385770-6 Popov E. P.: Introduction to mechanics of solids, 1968, Prentice-Hall Int. Inc., Library of Congress Catalog Card Number 68-10135 Gould L. Ph.: Introduction to Linear Elasticity, Springer-Verlag, 1983, ISBN 0-387-90876-5 S. Graham Kelly, Mechanical Vibration: Theory and Applications, SI. Centage Learning, 2011. | | | | | | | eResources addresses Adresy na platformie eNauczanie: | | | | | | | Example issues/
example questions/
tasks being completed | What differs plane state of stresses of the plane state of strains? What determines elongation of the axially tensioned rod? In which case there is a beam skew bending problem? Describe and review strength hypotheses. What determines the critical force of the compressed rod? | | | | | | | Work placement | Not applicable | | | | | | Data wydruku: 11.04.2024 01:48 Strona 2 z 2