

。 GDAŃSK UNIVERSITY OF TECHNOLOGY

Subject card

Subject name and code	Mathematical methods of physics and technics II, PG_00037303								
Field of study	Technical Physics								
Date of commencement of studies	October 2022		Academic year of realisation of subject			2023/2024			
Education level	first-cycle studies		Subject group			Optional subject group Subject group related to scientific research in the field of study			
Mode of study	Full-time studies		Mode of delivery			at the university			
Year of study	2		Language of instruction			Polish			
Semester of study	4		ECTS credits		4.0				
Learning profile	general academic profile		Assessment form		assessment				
Conducting unit	Katedra Fizyki Atomowej, Molekularnej i Optycznej -> Faculty of Applied Physics and Mathematics								
Name and surname of lecturer (lecturers)	Subject supervisor		prof. dr hab. Radosław Szmytkowski						
	Teachers	prof. dr hab. Radosław Szmytkowski							
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	:t	Seminar	SUM	
	Number of study hours	30.0	30.0	0.0	0.0		0.0	60	
	E-learning hours included: 0.0								
Learning activity and number of study hours	Learning activity	g activity Participation in didactic classes included in study plan		Participation in consultation hours		Self-study		SUM	
	Number of study hours	60		5.0		35.0		100	
Subject objectives	Acquaint students with mathematical methods of physics and technology.								
Learning outcomes	Course outcome		Subject outcome			Method of verification			
	K6_U02		Students know how to apply selected mathematical methods in description of physical processes.			[SU4] Assessment of ability to use methods and tools			
	K6_W03		Students are familiar with selected mathematical methods used in physics and technology.			[SW1] Assessment of factual knowledge			

Subject contents	1. The Dirac delta. 2. Matrix eigenvalue problems.						
	2. Sturm Liquville probleme						
	3. Sturm-Liouville problems.						
	4. The Green's function of a self-adjoint differential operator.						
	5. The generalized Green's function of a self-adjoint differential operator.						
	6. Applications of Green's functions.						
	7. Introduction to functions of a complex variable functions.						
	8. The Cauchy-Riemann conditions.						
	9. Complex sequences and series.						
	10. Contour integrals of complex functions.						
	11. The Cauchy-Goursat integral theorem.12. The Cauchy integral formula.						
13. The Taylor series of a complex function.							
	14. The Laurent series of a complex function.						
	5. Residuum of a complex function.						
	16. Evaluation of contour integrals b	of contour integrals by residues.					
	17. Evaluation of real definite integrals by residues.						
	18. Summation of series by residues.						
Prerequisites and co-reguisites							
Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade				
and criteria	Grade of exam	50.0%	50.0%				
	Grade of exercises (2 control works)	37.5%	50.0%				
Recommended reading	Basic literature G. B. Arfken, H. J. Weber, Mathematical methods for physicists, 5th ed. Academic, San Diego, 2001						
	Supplementary literature None.						
	eResources addresses Adresy na platformie eNauczanie:						
Example issues/ example questions/ tasks being completed	kample issues/ 1. Finding of eigenvalues and eigenvectors of given matrices. kample questions/ sks being completed						
	2. Finding Green's functions for given differential operators.						
3. Applications of the residuum theorem.							

Work placement	Not applicable
----------------	----------------

Document generated electronically. Does not require a seal or signature.