

。 GDAŃSK UNIVERSITY OF TECHNOLOGY

Subject card

Subject name and code	Atomic and molecular physics, PG_00037283								
Field of study	Technical Physics								
Date of commencement of studies	October 2022		Academic year of realisation of subject			2024/2025			
Education level	first-cycle studies		Subject group			Optional subject group Subject group related to scientific research in the field of study			
Mode of study	Full-time studies		Mode of delivery			at the university			
Year of study	3		Language of instruction			Polish			
Semester of study	6		ECTS credits			5.0	5.0		
Learning profile	general academic profile		Assessment form			exam			
Conducting unit	Division of Atomic, Molecular and Optical Physics -> Institute of Physics and Applied Computer Science -> Faculty of Applied Physics and Mathematics								
Name and surname of lecturer (lecturers)	Subject supervisor		prof. dr hab. Radosław Szmytkowski						
	Teachers		prof. dr hab. Radosław Szmytkowski						
		dr Piotr Weber							
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	orial Laboratory Projec		t	Seminar	SUM	
	Number of study hours	30.0	30.0	15.0	0.0		0.0	75	
	E-learning hours included: 0.0								
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study		SUM	
	Number of study hours	75	5.0		5.0			125	
Subject objectives	To acquaint students	with fundamer	ntals of atomic	and molecular	physics	•			
Learning outcomes	Course outcome		Subject outcome			Method of verification			
	K6_W08		Is able to critically analyze the results of an experiment.			[SW3] Assessment of knowledge contained in written work and projects			
	K6_U04		Knows the basic principles of experimental work in the atomic and molecular physics laboratory.			[SU1] Assessment of task fulfilment			
	K6_W02		Possesses basic knowledge of the quantum description of the atomic structure and of selected phenomena occurring at the atomic level.			[SW1] Assessment of factual knowledge			

Subject contents	1. Selected quantum mechanical tools of Physics of Atoms and Molecules:						
	a. the virial theorem,						
	b. the Hellmann-Feynman theorem,						
	c. the time-independent perturbation theory,						
	d. the variational method.						
	2. Isolated one-electron atom in the Schr{\"o}dinger theory:						
	a. separation of the Schr{\"o}dinger-Coulomb equation in spherical coordinates,						
	b. the angular momentum, spherical harmonics,						
	a process of colving the radial Schrüffeldinger Coulomb equation						
	c. process of solving the radial Schr{\"o}dinger-Coulomb equation,						
	d.the Coulomb wave functions in spherical coordinates,						
	e. the Bohr-Schr{\"o}dinger energy levels and their degeneration.						
	3. Fundamental physical constants of atomic and molecular physics. Systems of units.						
	4. The Stark effect for the one-electron atom:						
	a. the quadratic effect for the ground state,						
	a. the quadratic effect for the ground state,						
	b. the linear effect (the first excited state as an example).						
	5. The Zeeman effect for the one-electron atom:						
	a. with electron spin neglected,						
	b. with electron spin taken into account.						
	6. The ground state of a two-electron atom:						
	a. application of the perturbation theory,						
	b. application of the variational method.						
	7. Excited states of a two-electron atom.						
	8. Many-electron atoms.						
	9. The hydrogen molecular ion.						
	10. The hydrogen molecule.						

Prerequisites and co-requisites	Knowledge of quantum mechanics	s at the level of the course "Quantur	n Mechanics I".			
Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade			
and criteria	Grade for laboratories	50.0%	33.33%			
	Exam	37.5%	66.67%			
Recommended reading	Basic literature	B.H. Bransden, C.J. Joachain, Physics of atoms and molecules, 2nd ed., Prentice Hall, Harlow, 2003				
	Supplementary literature	1. Z. Leś, Podstawy fizyki atomu, PWN, Warszawa, 2014				
	2. W. Demtr{\"}oder, Atoms, molecules and photons, 3r Berlin, 2018		ecules and photons, 3rd ed., Springer,			
		3. Lecture notes provided by the lecturer (in Polish).				
	eResources addresses Uzupełniające					
		e:				
		Fizyka atomu i cząsteczki (semestr letni 2024/25) - Moodle ID: 43467 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=43467				
Example issues/ example questions/ tasks being completed	1. Present types of the Stark effect for the one-electron atom.					
	2. Describe the ground state of a two-electron atom using the variational method.					
	3. Describe the ground state of the hydrogen molecule.					
Work placement	Not applicable					

Document generated electronically. Does not require a seal or signature.