

Subject card

Subject name and code	Applications of mathematical methods in physics and engineering, PG_00037273								
Field of study	Technical Physics								
Date of commencement of studies	October 2022		Academic year of realisation of subject			2024/2025			
Education level	first-cycle studies		Subject group			Optional subject group Subject group related to scientific research in the field of study			
Mode of study	Full-time studies		Mode of delivery			at the university			
Year of study	3		Language of instruction			Polish			
Semester of study	6		ECTS credits			4.0			
Learning profile	general academic profile		Assessment form			assessment			
Conducting unit	Division of Atomic, Molecular and Optical Physics -> Institute of Physics and Applied Computer Science -> Faculty of Applied Physics and Mathematics								
Name and surname	Subject supervisor		dr inż. Sebastian Bielski						
of lecturer (lecturers)	Teachers		dr inż. Sebastian Bielski						
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	:t	Seminar	SUM	
	Number of study hours	30.0	30.0	0.0	0.0		0.0	60	
	E-learning hours included: 0.0								
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study		SUM	
	Number of study hours	of study 60 5.0			35.0		100		
Subject objectives	The aim of the course is to present and to systematize some mathematical objects, definitions or methods as tools that can be used to solve physical problems. Another aim is to develop the skills of solving problems of physics.								
Learning outcomes	Course outcome		Subject outcome			Method of verification			
	K6_W02		Students describe some problems of mechanics, electricity and magnetism, atomic and molecular physics.			[SW3] Assessment of knowledge contained in written work and projects			
			Students apply the mathematical concepts and methods they have learnt to solve selected problems concerning mechanics, electrodynamics, heat transfer, quantum mechanics.			[SU1] Assessment of task fulfilment			
			Students use the following mathematical methods and concepts applied in physics: special functions, Green's function method, integral transform methods, phasor method.			[SW3] Assessment of knowledge contained in written work and projects			

Data wygenerowania: 03.04.2025 05:21 Strona 1 z 2

1. Gamma function 2. Orthogonal polynomials 2.1. Gram - Schmidt orthogonalization, Rodrigues formula, generating functions 2.2. Hermite polynomials, harmonic oscillator 2.3. Legendre polynomials, electric potential, associated Legendre functions, spherical harmonics 3. Bessel functions 3. Bessel functions 3. Bessel functions 3. Equations leading to the Bessel equation 3. Separation and interest equation 3. Separation seading to the Bessel equation 3. Separations leading to the Bessel equations 4. Green's function method 4. 1-D problems 4. 3. D problems 4. 3. D problems 4. 3. D problems 4. 3. D problems 4. Servers function method 6. Laplace transform methods 6. I. Fourier transform method 6. Laplace transform method 6. Subject passing criteria passing threshold percentage of the final grade particular devices and correquisites Assessment methods and criteria Passing threshold Percentage of the final grade passing threshold percentage of the final grade passing criteria passing threshold percentage of the final grade passing criteria passing threshold percentage of the final grade passing criteria passing threshold percentage of the final grade passing criteria passing threshold percentage of the final grade passing threshold propriets passing threshold percentage of the final grade passing threshold propriets passing threshold percentage of the final grade passing threshold propriets passin	Subject contents	Lecture and tutorials:						
Assessment methods and criteria Subject passing criteria Passing threshold Percentage of the final grade 2 tests 42.0% 100.0%		2. Orthogonal polynomials 2.1. Gram - Schmidt orthogonalization, Rodrigues formula, generating functions 2.2. Hermite polynomials, harmonic oscillator 2.3. Legendre polynomials, electric potential, associated Legendre functions, spherical harmonics 3. Bessel functions 3.1. Bessel equation, Bessel functions 3.2. Heat transfer in an infinite cylinder, circular membrane problem 3.3. Equations leading to the Bessel equation 3.4. Spherical Bessel functions 3.5. Applications of Bessel functions 4. Green's function method 4.1. 1-D problems 4.2. 3-D problems 5. Complex-valued function of a real variable and its applications (e.g. phasor method, the method of the complex representation of electrical quantities) 6. Integral transform methods 6.1. Fourier transform method						
Recommended reading Basic literature M. Abramowitz, I. A. Stegun, "Handbook of Mathematical Functions" F. W. Byron, R. W. Fuller, "Mathematics of Classical and Quantum Physics" H. W. Wyld, "Mathematical methods for physics" H. W. Wyld, "Mathematical methods for Scientists and Engineers, University Science Books, 2003		basics of differential calculus and integral calculus						
Recommended reading Basic literature M. Abramowitz, I. A. Stegun, "Handbook of Mathematical Functions" F. W. Byron, R. W. Fuller, "Mathematics of Classical and Quantum Physics" H. W. Wyld, "Mathematical methods for physics" H. W. Wyld, "Mathematical methods for Scientists and Engineers, University Science Books, 2003	Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade				
Recommended reading Basic literature M. Abramowitz, I. A. Stegun, "Handbook of Mathematical Functions" F. W. Byron, R. W. Fuller, "Mathematics of Classical and Quantum Physics" H. W. Wyld, "Mathematical methods for physics" Supplementary literature Donald A. McQuarrie, Mathematical Methods for Scientists and Engineers, University Science Books, 2003 eResources addresses Adresy na platformie eNauczanie: Zastosowania metod matematycznych w fizyce i technice_2024/25 - Moodle ID: 42923 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=42923 Example issues/ example questions/ tasks being completed Apply the GramSchmidt orthonormalization method to the functions {x_n}, n=0,1,2, on the interval [1; 1] with the weighting function rho(x)=1. Find eigenvalues and normalized eigenfunctions of the 1D harmonic oscillator subjected to a constant external force F. Prove that the spherical harmonics are the eigenfunctions of the square of the angular momentum operator. Determine the general solution to the differential equation describing the motion of a pendulum which length is a linear function of time.		l	<u> </u>	-				
Supplementary literature Donald A. McQuarrie, Mathematical Methods for Scientists and Engineers, University Science Books, 2003 eResources addresses Adresy na platformie eNauczanie: Zastosowania metod matematycznych w fizyce i technice_2024/25 - Moodle ID: 42923 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=42923 Example questions/ tasks being completed Apply the GramSchmidt orthonormalization method to the functions {x_n}, n=0,1,2, on the interval [1; 1] with the weighting function rho(x)=1. Find eigenvalues and normalized eigenfunctions of the 1D harmonic oscillator subjected to a constant external force F. Prove that the spherical harmonics are the eigenfunctions of the square of the angular momentum operator. Determine the general solution to the differential equation describing the motion of a pendulum which length is a linear function of time.	Recommended reading	F. W. Byron, R. W. Fuller, "Mathematics of Classical and Quantum Physics"						
Zastosowania metod matematycznych w fizyce i technice_2024/25 - Moodle ID: 42923 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=42923 Example issues/ example questions/ tasks being completed Apply the GramSchmidt orthonormalization method to the functions {x_n}, n=0,1,2, on the interval [1; 1] with the weighting function rho(x)=1. Find eigenvalues and normalized eigenfunctions of the 1D harmonic oscillator subjected to a constant external force F. Prove that the spherical harmonics are the eigenfunctions of the square of the angular momentum operator. Determine the general solution to the differential equation describing the motion of a pendulum which length is a linear function of time.		Supplementary literature	Donald A. McQuarrie, Mathematical Methods for Scientists and					
Example issues/ example questions/ tasks being completed Apply the GramSchmidt orthonormalization method to the functions {x_n}, n=0,1,2, on the interval [1; 1] with the weighting function rho(x)=1. Find eigenvalues and normalized eigenfunctions of the 1D harmonic oscillator subjected to a constant external force F. Prove that the spherical harmonics are the eigenfunctions of the square of the angular momentum operator. Determine the general solution to the differential equation describing the motion of a pendulum which length is a linear function of time.		eResources addresses	,					
example questions/ tasks being completed with the weighting function rho(x)=1. Find eigenvalues and normalized eigenfunctions of the 1D harmonic oscillator subjected to a constant external force F. Prove that the spherical harmonics are the eigenfunctions of the square of the angular momentum operator. Determine the general solution to the differential equation describing the motion of a pendulum which length is a linear function of time.			Moodle ID: 42923					
	example questions/	with the weighting function rho(x)=1. Find eigenvalues and normalized eigenfunctions of the 1D harmonic oscillator subjected to a constant external force F. Prove that the spherical harmonics are the eigenfunctions of the square of the angular momentum operator. Determine the general solution to the differential equation describing the motion of a pendulum which length is a linear function of time.						
Work placement Not applicable	Work placement	Not applicable						

Document generated electronically. Does not require a seal or signature.

Data wygenerowania: 03.04.2025 05:21 Strona 2 z 2