Subject card

Subject name and code	Welding Technologies, PG_00055383						
Field of study	Mechanical Engineering						
Date of commencement of studies	October 2022		Academic year of realisation of subject			2023/2024	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	2		Language of instruction			Polish	
Semester of study	3		ECTS credits			3.0	
Learning profile	general academic profile		Assessment form			assessment	
Conducting unit	Department of Materials Engineering and Bonding -> Faculty of Mechanical Engineering and ShipTechnology						
Name and surname of lecturer (lecturers)	Subject supervisor		prof. dr hab. inż. Jerzy Łabanowski				
	Teachers		mgr inż. Adrian Wolski dr hab. inż. Dariusz Fydrych dr inż. Aleksandra Świerczyńska dr inż. Jacek Haras prof. dr hab. inż. Jerzy Łabanowski				
Lesson types and methods of instruction	Lesson type		Tutorial	Laboratory	Project	Seminar	SUM
	Number of study hours	15.0		15.0	0.0	0.0	30
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	30		8.0		37.0	75
Subject objectives	To acquaint students with the basic technologies of joining materials and methods of assessing the properties of the obtained joints						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	[K6_W03] possesses and is able to practically apply the knowledge on the construction, properties and testing methods of construction materials		The student knows the basic methods of joining and cutting construction materials. Student knows the methods for assessing the quality of welded joints			[SW1] Assessment of factual knowledge	
	[K6_U10] is able to formulate the principles of selecting a material for a construction, ensuring the correct operation of a device		The student is able to select the welding methods for a specific material group. The student is able to choose the welding parameters for the structural steel. The student indicates the methods for assessing the quality of welded joints			[SU3] Assessment of ability to use knowledge gained from the subject	
Subject contents	COURSE CONTENT Classification of welding and joining processes. Outline of welding thermal cycles. Phase transformations in the weld and heat affected zone. Definition of weldability. Basic and supplementary materials for welding. Basics of welding technology specification. Gas welding. Manual arc welding (MMA). Submerged arc welding under flux. TIG welding. Shielding gases. Gas-shielded arc welding MIG / MAG methods. Flux cored arc welding. Pulse arc welding. Laser welding, plasma and electron beam welding. Resistance pressure welding, spot and linear pressure welding, upset and flash welding. Basic parameters of the process. Other methods of pressure welding. Brazing. Thermal cutting methods: oxygen cutting, plasma cutting. Cutting laser beam. Deformation and welding stress and methods for their reduction. Inspection of welded joints, imperfections definitions and methods for their detection. LABORATORY PRACTICAL TRAINING Manual arc welding with coated electrodes, automatic submerged arc welding. Gasshielded arc welding. Pressure resistance welding. Gas welding and cutting. Structure of welded joints. Imperfections of welded joints						
Prerequisites and co-requisites	Basic knowledge of ferrous and nonferrous metals and alloys						

Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	colloquium at the end of the course	50.0\%	60.0\%
	Reports of the laboratory exercises	50.0\%	40.0\%
Recommended reading	Basic literature	1. Klimpel A.: Technologia spawania i cięcia metali. Wyd. Politechniki Ślaskiej, Gliwice 1997. 2. Walczak W. i inni: Spawalnictwo ćwiczenia laboratoryjne. Wyd. Politechniki Gdańskiej, Gdańsk, 2000. 3. Klimpel A., Mazur M.: Podręcznik spawalnictwa. Wyd. Politechniki Ślaskiej, Gliwice 2004.	
	Supplementary literature	1. Ferenc K.: Spawalnictwo 2. Poradnik Inżyniera Spaw 3. Ferenc K., Ferenc J.: Sp Warszawa 2005.	Varszawa 2007. , tom I i II, WNT Warszawa, 2005 gazy osłonowe i palne. WNT
	eResources addresses	Adresy na platformie eNauczanie:	

Example issues/	Make the distribution of welding processes, taking into account the state of the material in the joints,
example questions/	adhesives, external factors.
tasks being completed	2. What is the process of welding metals
3. What is the process of soldering	
4. What is the process of welding of metal	
5. Compare the welding technology of riveting (pros and cons)	
6. Make the distribution of welding processes	
7. Draw a cross-section of the welded joint butt and review its constitution	
8. Explain determine: binder, weld metal, weld ridge, SWC	
9. What are some types of welds and welded joints?	
10. Explain what purpose ukosuje edges of welded parts?	
11. What are the sources of heat in welding processes?	
12. What is the electric arc, in what conditions arises, what are the characteristics?	
	13. What are the characteristics of static electric arc?
14. What are the sources of welding current?	
15. What is the gas welding?	
16. Replace the pros and cons of gas welding	
17. What are the sources of heat in gas welding?	
18. Describe the method of arc welding electrode coated (indicated outline diagram)	
	19. Replace the advantages and disadvantages of arc welding electrode coated
20. How are built covered electrodes (the role and types of cover)	
21. Describe the method of submerged arc welding flux (indicated outline diagram)	
22. Replace the pros and cons of submerged arc welding flux	
23. What is the role of flux in the submerged arc welding flux	

