Subject card

Learning outcomes	Course outcome	Subject outcome	Method of verification
	[K6_W02] has knowledge of materials, their properties and research methods, including construction materials used in the machinery industry, has ordered, theoretically founded knowledge of mechanics including modeling of mechanical systems in the field of statics, kinematics and dynamics, and has an ordered, theoretically founded knowledge in the field of strength analysis materials and products	Student defines and classifies composite materials. The student indicates and describes the factors influencing the properties of composite materials and identifies the impact in detail geometric factors. Student uses the mixture rule for calculation modulus of elasticity of composites with a given volume fraction of fibers or grains. The student calculates the strength of a single layer of a polymer fiber composite. The student defines and explains the role of the boundary layer in composites with a polymer and metal matrix. The student describes the techniques of producing composites with a polymer matrix, as well as metal and ceramic. The student explains the mechanisms of the cracking resistance of composites with a ceramic matrix.	[SW3] Assessment of knowledge contained in written work and projects [SW1] Assessment of factual knowledge
	[K6_K01] feels the need for selfrealization by learning throughout life, is looking for modern and innovative solutions in their actions, is able to think creatively and act in an entrepreneurial way	The student actively participates in the classes. The student is able to interact in a group and make decisions using "brainstorming". The student is able to propose a composite material suitable for the requirements of a given application.	[SK1] Assessment of group work skills [SK5] Assessment of ability to solve problems that arise in practice [SK3] Assessment of ability to organize work
	[K6_U01] can find the necessary information in professional literature, databases and other sources, knows basic scientific and technical journals in the field of production management, quality and operation management, can integrate the obtained information, formulate conclusions and justify opinions	Student is able to use the databases of articles in order to deepen the knowledge necessary to obtain the correct solution. On the basis of the standard, student is able to determine the correctness of material tests. Student is able to confirm or question the appropriateness of making composite materials with different technologies.	[SU5] Assessment of ability to present the results of task [SU3] Assessment of ability to use knowledge gained from the subject [SU2] Assessment of ability to analyse information
Subject contents	Lecture: Definition and division of composite materials.Factors influencing the properties of composite materials. The geometry of the reinforcement of composite materials.Characteristics (properties, manufacturing techniques) of glass, carbon, aramid, boron, silicon carbide and aluminum oxide fibers.Prediction of elastic properties and strength as a function of quantity and geometry of the reinforcement.Structure and importance of the boundary layer in polymer and metal matrix composites.Manufacturing techniques, typical properties and practical examples of applications of metal, ceramic and polymer composites. Laboratory: designing the properties of metal matrix composite materials, designing the properties of polymer matrix composite materials, structural composites, producing materials using powder metallurgy, centrifugal casting - gradient materials, technological defects in composite materials, laminate manufacturing techniques.		
Prerequisites and co-requisites	Basic knowledge of materials science and strength of materials.		
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
		50.0\%	50.0\%
		50.0\%	50.0\%
Recommended reading	Basic literature	A.Boczkowska, J.Kapuścinski, Z.Linderman, D.Witemberg-Perzyk, S.Wojciechowski : Kompozyty. PW 2003. W. Królikowski, Polimerowe kompozyty konstrukcyjne, PWN 2012 J.Sobczak, Kompozyty metalowe, 2002 Imielińska K., Papanicolaou G.C., Wprowadzenie do nauki o materiałach kompozytowych Kompozyty polimerowe, Wybrane zagadnienia, Skrypt PG, Gdańsk 1998. F.L. Mattews, R.D.Rawlings, Composite Materials. 2008	
	Supplementary literature	- Dobrzański L.A.: Podstawy nauki o materiałach i metaloznawstwo. WNT, Warszawa, 2002. - M. Reyne, Composite solutions, JEC Group 2006	
	eResources addresses	Adresy na platformie eNauczanie:	

Example issues/ example questions/ tasks being completed	Choose a technology of making a carbon fiber rod.Give examples of applications of metal matrix composite materials in the automotive industry.Choose the material for the construction of the yacht's hull.
Work placement	Not applicable

