Subject card

Subject name and code	Sobolev space, PG_00021516						
Field of study	Mathematics						
Date of commencement of studies	October 2022		Academic year of realisation of subject			2022/2023	
Education level	second-cycle studies		Subject group			Optional subject group Subject group related to scientific research in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	2		ECTS credits			4.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Department of Probability Theory and Biomathematics -> Faculty of Applied Physics and Mathematics						
Name and surname of lecturer (lecturers)	Subject supervisor		dr inż. Robert Krawczyk				
	Teachers		dr inż. Robert Krawczyk				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Proje	Seminar	SUM
	Number of study hours	30.0	15.0	0.0	0.0	15.0	60
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	60		5.0		35.0	100
Subject objectives	The aim of the subject is to present basic properties of Sobolev spaces of functions from an interval to the real line and basic theorems on minimization of integral functionals in Sobolev spaces.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	K7_W03		A student knows theorems on representation of linear continuous functionals in selected Sobolev spaces.			[SW1] Assessment of factual knowledge	
	K7_W01		A student knows definitions and basic properties of the Sobolev spaces.			[SW1] Assessment of factual knowledge	
	K7_U06		A student is able to examine the convergence and the weak convergence of sequences in Sobolev spaces.			[SU1] Assessment of task fulfilment	
	K7_K02		A student can ask questions and formulate problems within the subject.			[SK4] Assessment of communication skills, including language correctness	
	K7_W02		A student knows a few embedding lemmas and can apply them. A student can give examples of problems on minimization of integral functionals in Sobolev spaces and understands their relation with suitable diffrential equations.			[SW1] Assessment of factual knowledge	
Subject contents	Basic functional spaces: continuous functions, absolutely continuous functions, p-integrable functions, essentially bounded functions. The Sobolev spaces - a definition and basic properties. Convergence and weakly convergence in the Sobolev spaces. Embedding lemmas. Minimization of integral functionals in the Sobolev spaces.						
Prerequisites and co-requisites	Functional analysis I.						

Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	A math test	50.0\%	50.0\%
	Project on a given subject. Project's presentetion on the seminar.	75.0\%	50.0\%
Recommended reading	Basic literature	1. Joanna Janczewska, Minimization of integral functionals in Sobolev spaces, Lecture Notes in Nonlinear Analysis, Juliusz Schauder Center for Nonlinear Studies, vol. 12, 2011, p. 61-91.	
	Supplementary literature	2. Giovanni Leoni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics, 105, Amer. Math. Soc., 2009.	
	eResources addresses	Adresy na platformie eNauczanie:	
Example issues/ example questions/ tasks being completed	1. Is $\left\{u_{n}\right\}$ a Cauchy sequence in $\mathrm{W}^{1, \mathrm{p}}[\mathrm{a}, \mathrm{b}]$?		
	2. Is $\left\{u_{n}\right\}$ convergent (weakly convergent) in $\mathrm{W}^{1, \mathrm{p}}[\mathrm{a}, \mathrm{b}]$?		
	3. Show please that a given functional $\mathrm{I}: \mathrm{W}^{11, \mathrm{p}}[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ is linear and continuous.		
	4. Give please basic properties of the Sobolev spaces $\mathrm{W}^{1, p}[a, b](p \geq 1)$ and $\mathrm{W}^{1, \infty}[a, b]$.		
	5. Show please that a given function $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ is absolutely continuous.		
	6. Prove please that any absolutely continuous function $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ has a bounded variation.		
Work placement	Not applicable		

