Subject card | Subject name and code | Stochastic differential equations, PG_00023809 | | | | | | | | |---|---|------------|---|------------|--|--|---------|-----| | Field of study | Mathematics | | | | | | | | | Date of commencement of studies | October 2022 | | Academic year of realisation of subject | | | 2023/2024 | | | | Education level | second-cycle studies | | Subject group | | | Optional subject group Subject group related to scientific research in the field of study | | | | Mode of study | Full-time studies | | Mode of delivery | | | blended-learning | | | | Year of study | 2 | | Language of instruction | | | Polish | | | | Semester of study | 3 | | ECTS credits | | | 5.0 | | | | Learning profile | general academic profile | | Assessment form | | | exam | | | | Conducting unit | Department of Probability Theory and Biomathematics -> Faculty of Applied Physics and Mathematics | | | | | | ematics | | | Name and surname | Subject supervisor prof. dr hab. inż. Tomasz Szarek | | | | | | | | | of lecturer (lecturers) | Teachers | | prof. dr hab. inż. Tomasz Szarek | | | | | | | | | | Gabriela Łuczyńska | | | | | | | Lesson types and methods | Lesson type | Lecture | Tutorial | Laboratory | Projec | :t | Seminar | SUM | | of instruction | Number of study hours | 30.0 | 0.0 | 0.0 | 0.0 | | 30.0 | 60 | | | E-learning hours inclu | uded: 30.0 | | | | | | | | Learning activity and number of study hours | Learning activity Participation in classes include plan | | | | Self-study SUM | | | | | | Number of study 60 hours | | 5.0 | | 60.0 | | 125 | | | Subject objectives | Introduction to advanced methods of stochastic analysis , in particular to the theory of stochastic differential equations. | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | Method of verification | | | | | | K7_U11 | | Student constructs probabilistic models related to stochastic differential equations. Student recognizes types of stochastic differential equations. | | [SU5] Assessment of ability to
present the results of task
[SU4] Assessment of ability to
use methods and tools
[SU1] Assessment of task
fulfilment | | | | | | K7_W10 | | Student is able to use various numerical methods to simulate solutions of stochastic differential equations. | | | [SW3] Assessment of knowledge contained in written work and projects [SW2] Assessment of knowledge contained in presentation | | | | | K7_K01 | | The student is able to search for necessary information from English literature on stochastic differential equations. | | | [SK2] Assessment of progress of
work
[SK3] Assessment of ability to
organize work | | | | | K7_W05 | | The student knows the basic theorems on the existence and uniqueness of solutions to stochastic differential equations. | | | [SW3] Assessment of knowledge contained in written work and projects [SW2] Assessment of knowledge contained in presentation | | | | | K7_W09 | | The student knows examples of applications in financial mathematics of stochastic differential equations. He can construct simple stochastic differential equations related to applications in financial mathematics. | | | [SW3] Assessment of knowledge contained in written work and projects [SW2] Assessment of knowledge contained in presentation | | | Data wydruku: 06.05.2024 20:53 Strona 1 z 2 | Subject contents | | | | | | | |--|---|--|-------------------------------|--|--|--| | , | | | | | | | | | Multidimensional Brownian motion. Integral and formula Ito. Some examples SDE. Bellman-Gronwall inequality and its applications. Existence and uniqueness for Ito equation. Markov property. Some estimations for the solutions. Semigroups and the Kolmogorov equations. Linear SDE. Martingale problem. Some applications of SDE. | | | | | | | Prerequisites and co-requisites | Courses completed: Stochastic Processes (MAT2007) and Stochastic Integral. | | | | | | | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | and criteria | Research project | 51.0% | 25.0% | | | | | | Exam | 51.0% | 50.0% | | | | | | | 51.0% | 25.0% | | | | | | Activity | | | | | | | Recommended reading | Basic literature | [1.]H. Kuo, Introduction to stochastic integration, Springer 2006. [2.] F.C. Klebaner, 'Introduction to Stochastic Calculus with Application', Imperial College Press, 2005. [3.] P. Protter, 'Stochastic Integration and Differential Equations', Springer, New York 2005. [4.] B. Oksendal, 'Stochastic Differential Equations, An Introduction with Applications', Springer-Verlag Heidelberg, New York 2000. [5.]N. Ikeda, S. Watanabe, Stochastic differential equations and Diffusion precesses, North-Holland 1981. | | | | | | | Supplementary literature | [1.] L. Brieman, 'Probability', Society for Industrial and Applied Mathematics, 1992. | | | | | | | | [2.] P. Billingsley, "Prawdopodobieństwo i miara", PWN, 1987. [3.] S. Łojasiewicz, "Wstęp do teorii funkcji rzeczywistych", PWN, Warszawa 1976. | | | | | | | eResources addresses | Adresy na platformie eNauczanie: Stochastyczne_Równania_Różniczkowe_23/24_nowy - Mood 34767 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=347 | | | | | | Example issues/
example questions/
tasks being completed | Prove that Brownian motion is a martingale and possesses the Markov property. Introduce the Ito integral. Prove the isometry property of stochastic integrals. Show that stochastic integrals are linear. Apply the Ito formula. Find stochastic differentials. Find stochastic exponential and logarithm. Solve general linear SDEs. Discuss the Martingale Problem. | | | | | | | Work placement | Not applicable | | | | | | Data wydruku: 06.05.2024 20:53 Strona 2 z 2