Subject card | Subject name and code | Solid state electronics, PG_00048718 | | | | | | | | | |---|--|---|--|-------------------------------------|--------|---|---------|-----|--| | Field of study | Materials Engineering, Materials Engineering, Materials Engineering | | | | | | | | | | Date of commencement of studies | October 2022 | | Academic year of realisation of subject | | | 2025/2026 | | | | | Education level | first-cycle studies | | Subject group | | | Optional subject group Subject group related to scientific research in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 4 | | Language of instruction | | Polish | | | | | | Semester of study | 7 | | ECTS credits | | | 3.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Division of Nanomaterials Physics -> Institute of Nanotechnology and Materials Engineering -> Faculty of Applied Physics and Mathematics | | | | | | | | | | Name and surname | Subject supervisor | | prof. dr hab. inż. Barbara Kościelska | | | | | | | | of lecturer (lecturers) | | | | | | | | | | | Lesson types and methods | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | of instruction | Number of study hours | 30.0 | 0.0 | 0.0 | 0.0 | | 15.0 | 45 | | | | E-learning hours included: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in
classes include
plan | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 45 | | 5.0 | | 25.0 | | 75 | | | Subject objectives | The aim of the course is to gain knowledge, skills and competences of solid state electronics. | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | K6_K01 | | Ability to solve problems related to the implementation of specific tasks. | | | [SK5] Assessment of ability to solve problems that arise in practice | | | | | | K6_W08 | | Knowledge of the development trend of solid state electronics. | | | [SW1] Assessment of factual knowledge | | | | | | K6_U06 | | Ability to analyze data and draw conclusions related to solid state electronics. | | | [SU2] Assessment of ability to analyse information | | | | | | K6_W07 | | Detailed knowledge on selected issues of solid state electronics. | | | [SW2] Assessment of knowledge contained in presentation [SW1] Assessment of factual knowledge | | | | Data wygenerowania: 22.11.2024 01:20 Strona 1 z 3 | Subject contents | 1. Introduction. | | | | | | |-------------------|--|--|--|--|--|--| | Subject contents | T. Introduction. | 2. Physics and properties of solids - a review | | | | | | | | | | | | | | | | 2.1. Density of states in 0D, 1D, 2D and 3D materials. | | | | | | | | 2.2 Dand structure of colider free electron marrly free electron and stight hinding model | | | | | | | | 2.2. Band structure of solids: free electron, nearly free electron and tight binding model. | | | | | | | | 2.3. Energy bands and carrier concentration in thermal equilibrium. | | | | | | | | | | | | | | | | 2.4. Electrical and thermal conduction in solids: carrier transport phenomena. | | | | | | | | 2.5. Kinetic phenomena in semiconductors. | | | | | | | | 2.5. Ninette prenontena in semiconductors. | | | | | | | | 3. Metal-semiconductor junctions and p-n junctions. | | | | | | | | | | | | | | | | 4. Diodes: Schottky diode, p-n diode, MIS, MOS, tunneling diode, resonant-tunneling diode. | | | | | | | | 5. Transistors: bipolar, FET, hot-electron HET and THET, single-electron transistor. | | | | | | | | | | | | | | | | 6. Light emitting diodes and lasers. | | | | | | | | | | | | | | | | 6.1. Light emitting diodes. | | | | | | | | 6.2. Semiconductor lasers. | | | | | | | | | | | | | | | | 6.3. Quantum-cascade laser. | | | | | | | | 7. Physical data at any and a plan a life | | | | | | | | 7. Photodetectors and solar cells. | | | | | | | | 8. Tunnel phenomena in superconductors: Josephson junction. | | | | | | | | | | | | | | | | 9. Spintronic devices. | | | | | | | | 10. Semiconductor technology. | | | | | | | | To. Schillottadelor technology. | | | | | | | | 10.1. Crystal growth and epitaxy. | | | | | | | | | | | | | | | | 10.2. Film formation. | | | | | | | | 10.3. Lithography and etching. | | | | | | | | | | | | | | | | 10.4. Impurity doping. | | | | | | | | | | | | | | | | 11. Summary. | | | | | | | Prerequisites | Knowledge od mechanics, electricity and magnetism, basics of nanophysics, quantum mechanics. | | | | | | | and co-requisites | | | | | | | Data wygenerowania: 22.11.2024 01:20 Strona 2 z 3 | Assessment methods and criteria | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | |--|--|--|-------------------------------|--|--|--|--| | | Seminar and presence on lessons | 50.0% | 34.0% | | | | | | | written exam | 50.0% | 66.0% | | | | | | Recommended reading | Basic literature 1. Aldert van der Ziel Podstawy fizyczne elektroniki ciała Stałego 2. C. Kittel Wstęp do fizyki ciała stałego | | | | | | | | | Supplementary literature 1. S.M. Sze Semiconductor Devices, Physics and Technology | | | | | | | | | | 24. O. Manasreh Semiconductor Heterojunctions and Nanostru | | | | | | | | eResources addresses | Adresy na platformie eNauczanie: | | | | | | | Example issues/
example questions/
tasks being completed | ample questions/ | | | | | | | | | | | | | | | | | | Semiconductors: band structure of semiconductors, carrier concentration; distribution functions. | | | | | | | | | Kkinetic phenomenas in semiconductors. | | | | | | | | | Contact phenomenas. | | | | | | | | | Diodes. | | | | | | | | | Transistors. | | | | | | | | | Lasers. | | | | | | | | | Tunneling processes in superconductors: Josephson junction. | | | | | | | | Work placement | Not applicable | | | | | | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 22.11.2024 01:20 Strona 3 z 3