Subject card

Subject name and code	Adjustment calculus, PG_00044802						
Field of study	Geodesy and Cartography						
Date of commencement of studies	October 2022		Academic year of realisation of subject			2023/2024	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study Subject group related to scientific research in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	2		Language of instruction			Polish	
Semester of study	3		ECTS credits			4.0	
Learning profile	general academic profile		Assessment form			assessment	
Conducting unit	Department of Geodesy -> Faculty of Civil and Environmental Engineering						
Name and surname of lecturer (lecturers)	Subject supervisor		dr inż. Daria Filipiak-Kowszyk				
	Teachers		dr inż. Daria Filipiak-Kowszyk				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	Seminar	SUM
	Number of study hours	30.0	15.0	0.0	0.0	0.0	45
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	45		6.0		49.0	100
Subject objectives	Get acquainted with the elements of matrix algebra and the basics of statistical analysis used in the alignment calculus.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	[K6_W03] knows and understands the principles of mathematical statistics described in the examples of the adjustment computations		Knowledge of mathematical statistics used in the alignment calculus.			[SW2] Assessment of knowledge contained in presentation	
	[K6_U03] can use a adjustment calculations to analyze the results of measurements and determine their accuracy		The ability to verify the results of measurements and their analysis with the use of alignment calculus methods.			[SU5] Assessment of ability to present the results of task [SU3] Assessment of ability to use knowledge gained from the subject	
	[K6_U01] can apply the principles of physics and mathematics to a simple verification of measurement and computational methods and their results		The ability to verify the obtained calculation results.			[SU3] Assessment of ability to use knowledge gained from the subject	
Subject contents							
	1. Matrix algebra: - basic matrix operations; - inverse of matrices; - distribution of matrices into triangular factors; - solving systems of equations using the marked and indefinite method. 2. Probabilistic basics of the equalization methods: - one-dimensional random variables (discret and continuous); - zero-one, binomial, normal distribution; - two-dimensional random variables (step and continuous); - uniform and normal distribution; - descriptive parameters of a random variable.						

Prerequisites and co-requisites	Prerequisites: basics of matrix operations (determinant, addition, multiplication) basics of differential and integral calculus		

