Subject card

Subject name and code	Mathematics I, PG_00044791						
Field of study	Geodesy and Cartography						
Date of commencement of studies	October 2022		Academic year of realisation of subject			2022/2023	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	1		ECTS credits			9.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Krzysztof Radziszewski				
	Teachers		dr Krzysztof Radziszewski mgr inż. Dorota Żarek				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Project	Seminar	SUM
	Number of study hours	45.0	45.0	0.0	0.0	0.0	90
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	90		12.0		123.0	225
Subject objectives	Students obtain competence in the range of using methods of mathematical analysis and knowledge how to solve simple problems that can be found in the field of engineering.						

Learning outcomes	Course outcome	Subject outcome	Method of verification
	[K6_W02] has basic knowledge and understands mathematics concepts useful for coordinate calculus (in a set of real and complex numbers), for the purpose of field and volume calculations, mathematical statistics and vector calculus, as well as elementar topology	Student solves equations and inequalities with elementary functions. Student defines basic notions of differential calculus of one variable function. Student determines intervals of monotonicity of a given functions and its extrema. Student applies the basic rules and techniques of integration to calculate indefinite. Student lists geometrical applications of definite integrals. Student distinguishes between types of improper integrals. Student uses definite integral to solve geometrical tasks. Student recognizes the importance of skillful use of basic mathematical apparatus in terms of study in future.	[SW1] Assessment of factual knowledge
	[K6_U01] can apply the principles of physics and mathematics to a simple verification of measurement and computational methods and their results	Student solves equations and inequalities with elementary functions. Student defines basic notions of differential calculus of one variable function. Student determines intervals of monotonicity of a given functions and its extrema. Student applies the basic rules and techniques of integration to calculate indefinite. Student lists geometrical applications of definite integrals. Student distinguishes between types of improper integrals. Student uses definite integral to solve geometrical tasks. Student recognizes the importance of skillful use of basic mathematical apparatus in terms of study in future.	[SU1] Assessment of task fulfilment
Subject contents	Functions of one variable and their properties: The absolute value function definition, solving equations and inequalities with absolute value, graphs of functions with absolute value. Power functions solving power and polynomial equations and inequalities. Rational functions solving national equations and inequalities. Exponential function properties and graphs, solving exponential equations and inequalities. Logarithmic functions properties and graphs, solving logarithmic equations and inequalities. Trigonometric and cyclometric functions properties and graphs, solving trigonometric equations and inequalities Limits and continuity: Infinite sequences. Fundamental definitions of limit of sequence, convergence and divergence, limit theorems. Applications to solving equation. Differential calculus of functions with one variable and applications of differential calculus of one variable functions: Definition of first derivative and differential. Rolls and Lagranges theorems. Higher derivatives and differentials. Monotonicity and local extrema. Convexity, concavity and inflexion points of a function. De IHospitals Thorem. Asymptotes. Applications of differential calculus to studying properties of one variable functions. Inegral calculus of functions with one variable antiderivatives: The process of finding antiderivatives and integration formulas the substitution method of integration and integration by parts. Integration of rational, trigonometric and irrational functions. Definite integrals in Riemanns sense: Newton-Leibniz Thorem. Integration formulas, the substitution method of integration and integration by parts for definite integrals. Applications of integral calculus in computing areas of plane figures, lengths of arcs, volumes of solids of revolution.		
Prerequisites and co-requisites			
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Written exam	50.0\%	60.0\%
	Midterm colloquium	50.0\%	40.0\%
Recommended reading	Basic literature	1. Praca zbiorowa pod redakcja B. Wikieł, Matematyka - Podstawy z elementami matematyki wyższej, PG, Gdańsk 2007. 2. K. Jankowska, T. Jankowski, Zbiór zadań z matematyki, PG, Gdańsk 1997. 3. Praca zbiorowa pod red. E. Mieloszyka, Matematyka Materiały pomocnicze do ćwiczeń, PG, Gdańsk 2004. 4. R. Leitner, Zarys matematyki wyższej I i II, Wydawnictwo Naukowo-Techniczne, Warszawa 2001. 5. R. Leitner, W. Matuszewski, Z. Rojek, Zadania z matematyki wyższej I i II, Wydawnictwo Naukowo-Techniczne, Warszawa 1999.	
	Supplementary literature	6. M. Gewert, Z. Skoczylas, Analiza matematyczna 1 Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław 2001. 7. M. Gewert, Z. Skoczylas, Analiza matematyczna 1 Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2001. 8. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach I , Wydawnictwo Naukowe PWN, Warszawa 1998.	

	eResources addresses	Podstawowe https://enauczanie.pg.edu.pl/moodle/course/view.php?id=24309 Compulsory course for the subject. Adresy na platformie eNauczanie:
Example issues/ example questions/ tasks being completed	1. Find the domain and the set of values of the function $f(x)=\arcsin (3 x-2)+$. Determine the inverse function of f. 2. Find the derivative of $y=4 x\left(3 x^{2}+5\right)^{5}$. 3. Sketch the graph of the function $f(x)=x$-Inx. Identify any local extrema and points of inflection. 4. Find the absolute extrema of $f(x)=4 x-36 x^{-1}$ on the interval $[1,6]$. 5. Calculate $4 x^{2} \ln x d x$. 6. Find the area between the two curves $y=e^{x}$ and $y=3-e^{x}$ from $x=-2$ to $x=0$.	
Work placement	Not applicable	

