Subject card

Subject name and code	Mathematics I, PG_00040551						
Field of study	Engineering Management						
Date of commencement of studies	October 2022		Academic year of realisation of subject			2022/2023	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	1		ECTS credits			5.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Lech Kujawski				
	Teachers		dr Lech Kujawski				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Project	Seminar	SUM
	Number of study hours	30.0	30.0	0.0	0.0	0.0	60
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	60		6.0		59.0	125
Subject objectives	The aim of the course is to give students a thorough understanding of basic concepts of calculus and algebra so that they are able to use them at different areas of economics. After completing the course the student: 1. will be provided with the ability of understanding the concepts of mathematical notions introduced during the lectures; 2. will have developed competent skills and will be able to demonstrate problem solving skills at the areas of economics involving mathematical tools						

Learning outcomes	Course outcome	Subject outcome	Method of verification
	[K6_U01] interprets and analyses the phenomena and processes taking place in the economy and organisation using basic theoretical knowledge of economics, management and science	Student combines knowledge of mathematics with knowledge from other fields. Student is able to process the acquired information, analyze and interpret it, draw conclusions and reason opinions.	[SU2] Assessment of ability to analyse information [SU3] Assessment of ability to use knowledge gained from the subject [SU4] Assessment of ability to use methods and tools
	[K6_W11] has the basic knowledge of mathematics, physics and chemistry necessary to solve technical problems	Student mentions basic properties of elementary functions. Student solves equations and inequalities with elementary functions. Student defines the basic concepts of differential calculus of one variable. Student determines intervals of monotonicity of a given functions and its extrema. Student analyses the properties of functions on the basis of an examination of its first and second derivatives. Student geometrically interprets the results of an examination of a graph of a function using the concept of limit, continuity and derivatives of functions. The student knows the basic concepts of matrix and vector calculus and rules related to the calculation of determinants. Student uses methods of mathematical description of phenomena in the economical processes.	[SW1] Assessment of factual knowledge [SW2] Assessment of knowledge contained in presentation
Subject contents	Functions of one variable and their properties. Elementary functions: absolute value, polynomials, rational functions, power functions, exponential and logarithmic functions, trigonometric and inverse trigonometric functions - properties, graphs, solving equations and inequalities. Infinite sequences - properties, limits. The limit and continuity of a function. Derivatives and differentials of first and higher orders. Rolle, Lagrange, de l'Hospital, Taylor-Maclaurin theorems. Monotonicity and local extrema. Convexity, concavity and inflexion points of a function. Asymptotes. Matrices, their properties and operations on matrices. Determinants. Systems of linear equations and inequalities. Basic definitions and properties of vectors. Eigenvectors and eigenvalues.		
Prerequisites and co-requisites	There is no requirement.		
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Tests (lecture)	0.0\%	6.0\%
	Class activity	0.0\%	8.0\%
	Exam	50.0\%	50.0\%
	Midterm colloquium	0.0\%	36.0\%
Recommended reading	Basic literature 1. Wikieł B., Matematyka, Podstawy z elementami matematyki wyższej, Wydawnictwo PG, Gdańsk 2. Gurgul H., Suder M., Matematyka dla kierunków ekonomicznych, Oficyna a Wolters Kluwer business, Warszawa 3. Jankowska K., Jankowski T., Zbiór zadań z matematyki, PG Gdańsk		

	Supplementary literature	1. Bryński M., Dróbka N., Szymański K., Matematyka dla zerowego roku studiów wyższych, Wydawnictwa Naukowo-Techniczne, Warszawa 2. Gewert M., Skoczylas Z., Analiza matematyczna 1, Definicje, twierdzenia wzory, Wydawnictwo GiS, Wrocła 3. Gewert M., Skoczylas Z., Analiza matematyczna 1, Przykłady i zadania, Wydawnictwo GiS, Wrocław 4. Banaś J., Podstawy matematyki dla ekonomistów, Wydawnictwa Naukowo-Techniczne, Warszawa 5. Matłoka M., Wojcieszyn B., Matematyka z elementami zastosowań w ekonomii, Wydawnictwo Wyższej Szkoły Bankowej w Poznaniu 6. Dorosiewicz S., Michalski T., Twardowska K., Matematyka. Podręcznik dla studentów kierunków ekonomicznych, Wydawnictwo C.H. Beck, Warszawa 2008 7. Sozański B., Dziedzic I., Algebra i analiza w zagadnieniach ekonomicznych, Wydawnictwo Bila, Rzeszów
	eResources addresses	Podstawowe https://enauczanie.pg.edu.pl/moodle/enrol/index.php?id=25596 ecourse Adresy na platformie eNauczanie:
Example issues/ example questions/ tasks being completed	1. Calculate limits $f(x)=((2 x-1) /(2 x+3))^{2}$ $f(x)=\left(x^{3}-1\right) /\left(x^{4}-1\right)$ at 2. Calculate derivative 3. Find the largest and monotonicity. 4. Find the inflection p 5. For which value of k 6. Solve the matrix equ 7. Solve the system of $3 x+2=0$ 8. Let $A=[24 ; 21]$. Fin	ds to infinity $=1$ derivatives of the given functions $\left(\ln (5 x)+\ln \left(x^{2}\right)+\tan (x) \cos (x)\right)^{\prime}$, (xex)". t value of the function $f(x)=2 / x-2+x$ for x in $[1,4]$. Also discus its intervals of concavity/convexity for $f(x)=-x^{4}+12 x^{3}-48 x^{2}+60 x+1$. or $a=[1 ; 2 ; 3]$ perpendicular to the vector $b=[0 ; k ; 2]$? $3 X-A X=B$ if $A=[56 ; 78], B=[-1-3 ; 2-1]$. tions using the method of Gaussian elimination. $x+2=-6,3 x+y+z=-1$, values of $A ; A^{-1} ; 5 A ; A^{2} ; A-61$
Work placement	Not applicable	

