Subject card | Subject name and code | , PG_00058694 | | | | | | | | | |---|---|----------------------|---|------------|------------|---|---------|-----|--| | Field of study | Materials Engineering, Materials Engineering, Materials Engineering | | | | | | | | | | Date of commencement of studies | February 2023 | | Academic year of realisation of subject | | | 2023/2024 | | | | | Education level | second-cycle studies | | Subject group | | | Obligatory subject group in the field of study Subject group related to scientific research in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | | Semester of study | 2 | | ECTS credits | | | 3.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Department of Polymers Technology -> Faculty of Chemistry | | | | | | | | | | Name and surname | Subject supervisor | dr inż. Marcin Włoch | | | | | | | | | of lecturer (lecturers) | Teachers | | dr inż. Marcin Włoch | | | | | | | | | | | dr inż. Ewa Głowińska | | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | | Number of study hours | 30.0 | 0.0 | 0.0 | 0.0 | | 15.0 | 45 | | | | E-learning hours included: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity Participation in classes include plan | | | | Self-study | | SUM | | | | | Number of study hours | 45 | | 5.0 | | 25.0 | | 75 | | | Subject objectives | Knowledge of structure-property relationships in polymers and methods of their characterization | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | K7_U04 | | The student is able to make a detailed analysis of the results from polymers testing | | | [SU5] Assessment of ability to
present the results of task
[SU1] Assessment of task
fulfilment | | | | | | K7_W02 | | The student knows experimental techniques (inluding spectroscopic, chromatographic and thermal analysis techniques) appropriate for polymeric materials | | | [SW1] Assessment of factual knowledge | | | | | | K7_W06 | | The student knows the theoretical basis of functioning of research equipment appropriate for polymers testing | | | [SW1] Assessment of factual knowledge | | | | | | K7_U03 | | Student is able to design research tasks, which permit to determine properties of plastics and factors responsibled for their failure | | | [SU5] Assessment of ability to present the results of task [SU3] Assessment of ability to use knowledge gained from the subject | | | | Data wydruku: 10.04.2024 03:44 Strona 1 z 2 | Subject contents | Physical states and viscoelastic pro
Characterization of plastics using s | polymers and their characterization. Crystalline and amorphous polymers. properties of polymers. Average molecular weight and bimodal polymers. g spectroscopic (FTIR, NMR), chromatographic (HPLC, GPC), microscopic lysis (DSC, DMTA, TGA) and other techniques. | | | | | | |--|---|--|--|--|--|--|--| | | Durability and degradation of plastics: Classification of polymer degradation processes. Functional additives for plastics preventing their degradation (e.g. antioxidants, photostabilizers and flame retardant | | | | | | | | | nalysis of plastics failure: Procedure, selection of testing techniques and analysis of obtained results. nalysis of exemplary plastics failures. Elements of monomers, polymers and functional additives toxicology. | | | | | | | | | Physicochemistry of polymers surface: Polymer surface structure. Methods of polymer surface testing and modification | | | | | | | | | Tribology of polymers: Mechanical-molecular theory of friction. Direct contact area during the friction polymers. Mechanical and adhesive interactions. Influence of polymer structure and temperature on polymers friction coefficient. Physico-chemical phenomena occuring during polymer friction. Effects of lubricants. Modification of tribological properties of polymers. Triboelectric effect. Tribological wear. | | | | | | | | | Recycling of plastics and environment protection: Sources of plastics waste, recycling methods, domestic and European Union regulations. Microplastics in environment: formation, identification and consequences of their presence in the environment. Plastics obtained using bio-based substances. Biodegradable plastics. | | | | | | | | Prerequisites and co-requisites | Basic knwoledge in the area of che | emistry and technology of polymers | | | | | | | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | | and criteria | written tests (three in the term) | 50.0% | 75.0% | | | | | | | written and oral works during seminar | 50.0% | 25.0% | | | | | | Recommended reading | Basic literature | Struktura, właściwości, zastosowan
(2) J.F. Rabek: Polimery i ich zasto
2, PWN, Warszawa 2021
(3) W. Szlezyngier, Z.K. Brzozowsk | W. Szlezyngier, Z.K. Brzozowski: <i>Tworzywa sztuczne. Tom III:</i>
odki pomocnicze i specjalne zastosowania polimerów, Wydawnictwo | | | | | | | Supplementary literature | (1) J.F. Rabek: Współczesna wiedza o polimerach. Tom 1: Budowa
strukturalna polimerów i materiały badawcze, PWN, Warszawa 2017
(2) J.F. Rabek: Współczesna wiedza o polimerach. Tom 2: Polimery
naturalne i syntetyczne, otrzymywanie i zastosowania, PWN,
Warszawa 2017 | | | | | | | | eResources addresses | Adresy na platformie eNauczanie: Inżynieria Polimerów II (PG_00058694) - WYKŁAD / SEMINARIUM - Moodle ID: 27811 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=27811 | | | | | | | Example issues/
example questions/
tasks being completed | Factors responsibled for polymers degradation Degradability of polyolefins, polyamides and polyesters. Mechanisms of action of degradation stabilizers and antioxidants. Factors and processes causing failure of plastic products. Methods of testing the tribological properties of plastic | | | | | | | | Work placement | Not applicable | | | | | | | Data wydruku: 10.04.2024 03:44 Strona 2 z 2