Subject card | Subject name and code | , PG_00058869 | | | | | | | | |---|---|---------------------|--|---------------|----------------|---|-----|-----| | Field of study | Nanotechnology | | | | | | | | | Date of commencement of studies | 97 | | Academic year of realisation of subject | | | 2022/2023 | | | | Education level | first-cycle studies | | Subject group | | | Obligatory subject group in the field of study | | | | | | | | | | Subject group related to scientific research in the field of study | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | Semester of study | 1 | | ECTS credits | | | 6.0 | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | Conducting unit | Department of Solid State Physics -> Faculty of Applied Physics and Mathematics | | | | | | | | | Name and surname of lecturer (lecturers) | Subject supervisor dr hab. Katarzyna Kazimierczuk | | | | | | | | | | Teachers | | dr hab. Katarzyna Kazimierczuk | | | | | | | | | | dr inż. Damia | | | | | | | Lesson types and methods | Lesson type | Lecture | Tutorial | Laboratory | Projec | Project Seminar | | SUM | | of instruction | Number of study hours | 30.0 | 15.0 | 0.0 | 0.0 | | 0.0 | 45 | | | E-learning hours included: 0.0 | | | | | | | | | Learning activity and number of study hours | Learning activity Participation in classes include plan | | | | Self-study SUM | | | | | | Number of study 45 hours | | 15.0 | | 90.0 | | 150 | | | Subject objectives | The aim of this cours | e is the repetition | on of basic che | mical knowled | ge. | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | K6_W05 | | can give examples of basic
organic and inorganic compounds,
describe their properties and give
typical reactions. do basic calculations | | | [SW1] Assessment of factual knowledge | | | | | K6_W01 | | - can give examples of chemical
substances used in every-day life
- can give examples of polymers
produced in a large scale | | | [SW1] Assessment of factual knowledge | | | | | K6_U01 | | - student presents wider knowledge in chosen fields of chemistry - student uses knowledge in solving problem, not only in the chemistry field | | | [SU3] Assessment of ability to use knowledge gained from the subject [SU4] Assessment of ability to use methods and tools | | | | Subject contents | Chemical nomenclature inorganic compounds Basic Chemical Concepts and Laws3. Types of chemical reaction (including oxidation and reduction) Calculations Stoichiometry of Chemical Formulas and Chemical Equations Calculation Concentrations of solutions (Mol, Percent, etc.) Molecular form orbital, Lewis pattern, hybridization, Chemical bonds and intermolecular interactions States of concentration Hydrogen, oxygen, water - construction, physical and chemical properties Theories of acids and bases | | | | | | | | Data wydruku: 19.04.2024 17:22 Strona 1 z 2 | Prerequisites and co-requisites | Basic knowledge of chemistry, physics and mathematics is required. | | | | | | |--|--|--|-------------------------------|--|--|--| | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | and criteria | Exercise two tests | 50.0% | 40.0% | | | | | | Lecture - exams | 50.0% | 60.0% | | | | | Recommended reading | Basic literature | literature Any high school chemistry handbook. J. D. Lee - Zwięzła chemia nieorganiczna | | | | | | | | | | | | | | | | L. Jones, P. Atkins- Chemistry: Molecules, Matter, and Change | | | | | | | Supplementary literature | A. Bielański Chemia ogólna i nieorganiczna | | | | | | | McMurry - Organic chemistry. | | | | | | | | eResources addresses | Adresy na platformie eNauczanie: | | | | | | | | 2022/23 Chemia ogólna i nieorganiczna dla kierunku Nanotechnologia semestr I - Moodle ID: 25380 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=25380 | | | | | | Example issues/
example questions/
tasks being completed | 1.Polarized covalent bonds. Give an example of compound. | | | | | | | | 2.Calculate the % and molar concentration of potassium hydroxide solution, obtained by introducing of 39 g of potassium into 500 g of water. The solution density is 1.09 g/cm³. | | | | | | | | 3. Write down the reactions: | | | | | | | | a) neutralizing of magnesium hydroxide | | | | | | | | b) synthesis of sulfuric(VI) acid | | | | | | | Work placement | Not applicable | | | | | | Data wydruku: 19.04.2024 17:22 Strona 2 z 2