

GDAŃSK UNIVERSITY

Subject card

Subject name and code	Density functional approaches to the many-body problem, PG_00060061							
Field of study	Technical Physics							
Date of commencement of studies	October 2020		Academic year of realisation of subject			2022/2023		
Education level	first-cycle studies		Subject group			Optional subject group Subject group related to scientific research in the field of study		
Mode of study	Full-time studies		Mode of delivery			at the university		
Year of study	3		Language of instruction			English		
Semester of study	6		ECTS credits		2.0			
Learning profile	general academic profile		Assessment form			assessment		
Conducting unit	Zakład Metod Obliczeniowych Fizyki Chemicznej -> Instytut Fizyki i Informatyki Stosowanej -> Faculty of Applied Physics and Mathematics							
Name and surname	Subject supervisor		dr Simone Taioli					
of lecturer (lecturers)	Teachers	dr Simone Taioli						
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	ect Seminar		SUM
	Number of study hours	30.0	0.0	0.0	0.0		0.0	30
	E-learning hours included: 0.0							
Learning activity and number of study hours	Learning activity	Participation in classes includ		Participation in consultation hours		Self-study SUM		SUM
	Number of study hours	30		0.0		0.0		30
Subject objectives	The lectures introduce the density functional approach to the many-body problem and show its applications in condensed matter							
Learning outcomes	Course outcome		Subject outcome		Method of verification			
	[K6_U09] Can use technical literature in English.		The student is able to find information about the content of the subject in the recommended publications written in English.			[SU3] Assessment of ability to use knowledge gained from the subject		
	[K6_W02] Has systematized knowledge of the basics of physics, including mechanics, thermodynamics, electricity and magnetism, optics, atomic and particle physics, solid-state physics, nuclear and elementary particle physics.		The student has basic knowledge about the time-dependent quantum mechanics and knows its applications			[SW1] Assessment of factual knowledge		

Subject contents	1. Essential of Quantum Mechanics
	The time-independent Schrödinger equation and the variational principle
	Wave mechanics of non-interacting fermions
	Basis vectors and representations
	Periodic boundary conditions
	Local orbitals
	The jellium model
	Pseudopotentials
	2. Essential of Density Functional Theory
	What is a functional? Functional derivatives
	The HohenbergKohn theorems
	The Thomas-fermi model
	The Kohn-Sham equations
	3. The variational principle at work
	The Hellmann-Feynman theorem
	Perturbation theory with the density
	Second order HohenbergKohn-Sham functional
	4. Linear response theory
	The response function and its relationship to the Kohn-Sham density functional
	The dielectric function and the Ritchie theory
	Linear response and Greens functions
	Linear response in jellium and in crystals
	5. Modelling atoms within solids
	Cohesive energy
	Elastic constants

Recommended reading	Basic literature Lecture notes taken during the lessons are enough to survive the e				
and criteria	quiz	50.0%	100.0%		
Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade		
	Basic working knowledge of high-level programming (Fortran 90 and shell script)				
	Mathematics (integration, differential equation)				
Prerequisites and co-requisites	Basics of quantum mechanics				
	Time-dependent density functional calculations (maybe)				
	Real-space density functional calculations				
	Density functional calculations with atomic orbitals				
	Plane-wave density functional calculations				
	Tight-binding approach to electronic structure calculations				
	Computational minimum				
	7. The computational way (exercises)				
	Linear response and excitation energies				
	Time-dependent observables				
	The time-dependent Kohn-Sham scheme				
	Fundamentals theorems				
	6.Time-dependent density functional theory (maybe)				
	Tight-binding approach				
	Pairwise potentials in molecules and solids				
	Phonons and lattice dynamics				

		or a deeper knowledge the following texts can be adopted: Electronic structure: Basic Theory and Practical Methods by Richard M. Martin, Cambridge University Press, 2nd edition, 2020, ISBN: 9781108555586 Computational Nanoscience by Kálmán Varga & Joseph A. Driscoll, Cambridge University Press, 2012 ISBN: 9780511736230	
	eResources addresses	Uzupełniające Adresy na platformie eNauczanie:	
Example issues/ example questions/ tasks being completed	Use a numerical code based on DFT to calculate the electronic band structure of simple solids, such as silicon, diamond and graphite		
Work placement	Not applicable		