
Data wygenerowania: 24.09.2025 21:07 Strona 1 z 4

 

 
Subject card
 
 
Subject name and code Object-oriented programming languages III, PG_00060228

Field of study Technical Physics

Date of commencement of 
studies

October 2023 Academic year of 
realisation of subject

2025/2026

Education level first-cycle studies Subject group Optional subject group
Subject group related to scientific 
research in the field of study

Mode of study Full-time studies Mode of delivery at the university

Year of study 3 Language of instruction English

Semester of study 5 ECTS credits 5.0

Learning profile general academic profile Assessment form assessment

Conducting unit Katedra Fizyki Teoretycznej i Informatyki Kwant. -> Faculty of Applied Physics and Mathematics -> Wydziały 
Politechniki Gdańskiej

Name and surname 
of lecturer (lecturers)

Subject supervisor dr hab. Jan Franz
Teachers

Lesson types and methods 
of instruction

Lesson type Lecture Tutorial Laboratory Project Seminar SUM
Number of study 
hours

15.0 0.0 60.0 0.0 0.0 75

E-learning hours included: 0.0

eNauczanie source addresses:
Moodle ID: 1306 Obiektowe języki programowania III
https://enauczanie.pg.edu.pl/2025/course/view.php?id=1306

Learning activity 
and number of study hours

Learning activity Participation in didactic 
classes included in study 
plan

Participation in 
consultation hours

Self-study SUM

Number of study 
hours

75 5.0 45.0 125

Subject objectives The aim of this course is to introduce students to object-oriented programming (OOP) in Java with a focus 
on applications in physics and applied informatics. Students will learn to design, implement, and test 
scientific software using modern Java tools, libraries, and design patterns. Emphasis is placed on writing 
robust, maintainable code and developing the skills needed for larger projects in research and technology.

Learning outcomes Course outcome Subject outcome Method of verification
[K6_U03] Knows programming 
languages and can use basic 
software packages

is able to write programs in an 
object-oriented language, use 
project management tools, apply 
testing frameworks, and make use 
of selected scientific libraries to 
support problem-solving in physics 
and technology.

[SU1] Assessment of task 
fulfilment

[K6_W01] Understands the 
importance of physics and its 
applications in connection to 
civilization.

is able to model simple physical 
systems using object-oriented 
programming and reflect on how 
computational skills support the 
broader use of physics in science 
and technology.

[SW2] Assessment of knowledge 
contained in presentation

[K6_K01] Understands the need to 
learn and improve professional 
and personal competencies. Can 
inspire and organize other 
people’s learning process

is able to independently extend 
their knowledge of object-oriented 
programming, critically apply 
object-oriented tools and design 
patterns to scientific problems, 
and collaborate in ways that 
support and inspire the learning of 
others.

[SK5] Assessment of ability to 
solve problems that arise in 
practice

[K6_W05] Has knowledge of 
programming methodology and 
techniques, and the use of 
selected IT tools in physics and 
technology.

is able to apply object-oriented 
programming methodology and 
techniques, and make effective 
use of selected computational 
tools to solve problems in physics 
and technology.

[SW1] Assessment of factual 
knowledge



Data wygenerowania: 24.09.2025 21:07 Strona 2 z 4

Subject contents 1. The Java Ecosystem & Project Setup

 

Lecture: Java Virtual Machine (JVM), Java Development Kit (JDK), Integrated Development Environments 
(IDEs); project management with Maven and Gradle.

Lab: Create first Maven project; run a simple physics-related program.

 

2. Classes, Objects & Testing

Lecture: classes, fields, methods, constructors; introduction to unit testing with JUnit.

Lab: Implement a Particle class and basic unit tests.

 

3. Primitive Types, Wrappers, Arrays & Efficient Java Matrix Library (EJML)

Lecture: primitive types vs objects; arrays; wrapper classes; first look at EJML.

Lab: Vector operations with arrays and EJML.

 

4. Inheritance and Interfaces

Lecture: inheritance, overriding, abstract classes, interfaces.

Lab: Class hierarchy for different particle types.

 

5. Exceptions and Robust Code

Lecture: checked vs unchecked exceptions; error handling strategies.

Lab: Robust file input/output (I/O) and simple simulation error handling.

 

6. Collections Framework

Lecture: List, Set, Map; iterators; when to use collections.

Lab: Store and analyze particle trajectories with collections.

 

7. Design Patterns I



Data wygenerowania: 24.09.2025 21:07 Strona 3 z 4

Lecture: Factory, Singleton, Observer (with light Unified Modeling Language (UML) illustrations).

Lab: Implement a particle factory and observer for logging.

 

8. Generics & Collections in Practice

Lecture: generic classes and methods; collection implementations.

Lab: Generic containers for results; use sorted sets/maps.

 

9. Refactoring & Testing Practices

Lecture: cohesion, coupling, SOLID (Single responsibility, Openclosed, Liskov substitution, Interface 
segregation, Dependency inversion) principles; test-driven development (TDD).

Lab: Refactor earlier code and extend test coverage.

 

10. Lambda Expressions (Basics)

Lecture: functional interfaces, lambda syntax.

Lab: Apply lambdas to simple numerical transformations.

 

11. Streams and Applications of Lambdas

Lecture: Stream Application Programming Interface (API): map, filter, reduce; parallel streams.

Lab: Analyze simulation results with streams.

 

12. Scientific Libraries in Java

Lecture: EJML in more depth; Apache Commons Math; JavaScript Object Notation (JSON) and Extensible 
Markup Language (XML) parsing.

Lab: Solve linear systems and parse input from files.

 

13. Design Patterns II & Project Organization
 Lecture: Strategy, Composite; modular project structure with Maven/Gradle.



Data wygenerowania: 24.09.2025 21:07 Strona 4 z 4

Lab: Apply Strategy pattern to select simulation models.

 

14. Student Project Presentations

Lecture: Recap of object-oriented programming (OOP) in Java and integration of tools.

Lab: Final project demos with short presentations.

 

15. Summary & Outlook

Lecture: Future directions in programming (Java trends, concurrency, functional style, artificial intelligence 
(AI)assisted coding).

Lab: Discussion of how course skills transfer to research projects.

 

Prerequisites 
and co-requisites

Object-oriented programming languages 1 and 2

Assessment methods 
and criteria

Subject passing criteria Passing threshold Percentage of the final grade
lab credit 50.0% 75.0%
final exam 50.0% 25.0%

Recommended reading Basic literature 1. Joshua Bloch, Effective Java, 3rd Edition, Addison-Wesley, 2017
2. Raoul-Gabriel Urma, Mario Fusco, Alan Mycroft, Modern Java in 

Action, Manning Publications, 2018
Supplementary literature 1. Cay S. Horstmann, Core Java Volume 1 Fundamentals. 11Th 

edition, Prentice Hall, 2018
2. Cay S. Horstmann, Core Java Volume 2 Advanced Features. 11Th 

edition, Prentice Hall, 2018
3. Herbert Schildt, Java: The Complete Reference. 11Th edition, 

McGraw-Hill, 2019
eResources addresses Basic

https://docs.oracle.com/en/java/ - The Oracle Java Documentation site 
offers a comprehensive set of API references, tutorials, code samples, 
and developer guides spanning Java SE, Java EE, and related 
technologies to support building robust Java applications.
Supplementary
https://ejml.org - EJML (Efficient Java Matrix Library) is an open-
source Java library for fast and flexible matrix computations, offering 
support for linear algebra operations such as decomposition, solving 
systems, and manipulation of dense and sparse matrices.

Example issues/ 
example questions/ 
tasks being completed

1.) You are given a single class Simulation that directly handles file input, data storage, calculations, and 
result output. Identify at least two problems with this design. Suggest a refactoring strategy using separate 
classes or packages.

 

2.) Programming Task: Radioactive Decay Simulation
Implement a Particle class with attributes (id, half-life, state). Store particles in a collection and simulate 
decay step by step using random numbers. Handle invalid input with exceptions. Include at least one JUnit 
test. Print the number of undecayed particles after each step.

Work placement Not applicable

Document generated electronically. Does not require a seal or signature.


