Subject card

Subject name and code	Mathematics, PG_00060834						
Field of study	Chemical Technology						
Date of commencement of studies	October 2023		Academic year of realisation of subject			2023/2024	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	1		ECTS credits			9.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Anita Dabrowicz-Tlałka				
	Teachers		dr Hanna Guze dr Anita Dabbrowicz-Tlałka				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	Seminar	SUM
	Number of study hours	45.0	60.0	0.0	0.0	0.0	105
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	105		15.0		150.0	270
Subject objectives Students obtain competence in the range of using methods of mathematical analysis and linear algebra a knowledge how to solve simple problems that can be found in the field of engineering.							
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	[K6_W01] has knowledge in mathematics, including the solution of equations and inequalities involving elementary functions, differential and integral calculus, elements of vector analysis, statistics, optimisation and numerical methods, has basic knowledge in selected branches of physics, useful for the description and analysis of technological processes		Student mentions basic properties of elementary functions. Student solves equations and inequalities with elementary functions. Student gives the definition of basic notions of differential calculus. Student uses basic notions and formulas of differential calculus. Student determines intervals of monotonicity of a given functions and its extrema. Students calculates antiderivatives using the substitution method of integration and integration by parts. Student applies definite integrals to solving geometrical problems. Student uses the basic operations on complex numbers.			[SW1] Assessment of factual knowledge	
	[K6_U01] is able to acquire information from literature, databases and other appropriately selected sources, also in English; is able to integrate information obtained, interpret it and make conclusions, formulate and justify opinions		Student recognizes the importance of skillful use of basic mathematical apparatus in terms of study in the future. Student is able to process the acquired information, analyze and interpret it, draw conclusions and reason opinions.			[SU5] Assessment of ability to present the results of task [SU1] Assessment of task fulfilment [SU2] Assessment of ability to analyse information	

Subject contents	The sets of numbers and set notation Functions of one variable: - definitions, graphs, properties, - absolute value, equations and in - polynomials, rational functions, exponential and logarithmic func - equations and inequalities involvi - applications to mathematical mo Infinite number sequences, limits and - boundedness and monotonicity - imits - continuity of functions, types of Single variable calculus: - definition of the derivative - Rolle's and Lagrange's theorem - L'Hospital's Rule - monotonicity and local/global ex - higher order derivatives - concavity, inflection points - applications of single variable di - applications of differential calcul Definite and indefinite integral, Funda - basic integration formulas - integration by substitution, by pa applications of integral calculus Complex numbers.	n. Basic mathematics symbols. ontinuity, limits equalities power functions, trigonometric and inverse trigonomertic functions, tions ving these functions deling d continuity of functions discontinuities and their interpretation s and their applications xtrema (optimization problems) fferential calculus to curve sketching, us to other fields (e.g. chemistry, physics, biology) amental Theorem of Calculus arts, by partial fractions to other fields
Prerequisites and co-requisites		
Assessment methods and criteria	Subject passing criteria	Passing threshold \quad Percentage of the final grade
	Activity during lectures and classes	0.0\% 10.0\%
	Midterm exams	50.0\%
	Written exam	50.0\% 45.0\%
Recommended reading	Basic literature	- Praca zbiorowa pod redakcja Wikieł B.: Matematyka - Podstawy z elementami matematyki wyższej. PG, Gdańsk 2007; - M. Gewert, Z. Skoczylas : Analiza matematyczna 1, Oficyna Wydawnicza GiS 2008; - K. Jankowska, T. Jankowski : Zbiór zadań z matematyki, Wydawnictwo PG, 2010.
	Supplementary literature	- G.M. Fichtenholz : Rachunek różniczkowy i całkowy I, PWN 1985; - R. Leitner : Zarys matematyki wyższej I i II, Wydawnictwo NaukowoTechniczne Warszawa 1999; - L. Maurin, M. Maczyński, T. Traczyk : Matematyka - podręcznik dla studentów wydziałów chemicznych, PWN 1975. - W. Żakowski, G. Decewicz : Matematyka I I II, Wydawnictwo Naukowo-Techniczne, Warszawa 1991.

| eResources addresses | Podstawowe
 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=31298 - E-
 course on the eNauczanie platform with course materials and
 exercises for students. The e-course also has an organizational
 character related to the subject.
 Adresy na platformie eNauczanie:
 WCh - Bt, Ch, TCh, ZT s1: 2023/24 (A.Tlałka) - Moodle ID: 31298
 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=31298
 WCh - Bt, Ch, TCh, ZT s1: 2023/24 (A.Tlałka) - Moodle ID: 31298
 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=31298
 WCh - Bt, Ch, TCh, ZT s1: 2023/24 (A.Tlałka) - Moodle ID: 312998
 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=31298 |
| :--- | :--- | :--- |
| Example issues/
 example questions/
 tasks being completed | 1. Find the domian and the set of values of the function f(x) $=\ldots .$. |
| 2. Find the derivative of $f(x)=$ | |
| 3. Sketch the graph of the function $f(x)=$. Identify any local extrema and points of inflection. | |

