Subject card | Subject name and code | Technical Mechanics | Technical Mechanics 2, PG_00056246 | | | | | | | | |---|--|---------------------------------------|---|------------|------------------------|--|---------|-----------|--| | Field of study | Design and Construction of Yachts | | | | | | | | | | Date of commencement of | | | | | | | | | | | studies | 000001 2022 | | Academic year of realisation of subject | | | 2023/2024 | | | | | Education level | first-cycle studies | | Subject group | | | | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 2 | | Language of instruction | | | Polish | | | | | Semester of study | 3 | | ECTS credits | | | 6.0 | | | | | Learning profile | practical profile | | Assessment form | | | exam | | | | | Conducting unit | Zakład Mechaniki Konstrukcji Oceanotechnicznych -> Institute of Ocean Engineering and Ship Technology - > Faculty of Mechanical Engineering and Ship Technology | | | | | | | | | | Name and surname of lecturer (lecturers) | Subject supervisor | | dr hab. inż. Tomasz Mikulski | | | | | | | | | Teachers | | mgr inż. Leszek Samson | | | | | | | | | | | dr hab. inż. Tomasz Mikulski | | | | | | | | | | | dr hab. inż. Beata Zima | | | | | | | | | | | dr inż. Jakub Kowalski | | | | | | | | Lesson types and methods | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | of instruction | Number of study hours | 30.0 | 30.0 | 15.0 | 0.0 | | 0.0 | 75 | | | | E-learning hours included: 0.0 | | | | | | | | | | | Additional information: Lectures, exercises and laboratories are conducted in the system of full-time education. | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in classes include plan | | | Self-study | | SUM | | | | | Number of study hours | 75 | | 15.0 | | 60.0 | | 150 | | | Subject objectives | The aim of the course is to provide theoretical foundations of mechanics and strength regimes of one-dimensional structures (rods, beams). Student after the course should be able to: | | | | | | | s of one- | | | | - determine the distributions of internal forces and moments | | | | | | | | | | | - determine the stress distribution, | | | | | | | | | | | - calculate the displacements of one-dimensional structures, | | | | | | | | | | | - indicate the place of the greatest material effort at typical structure loads, | | | | | | | | | | | - calculate the effort of material using a variety of strength material hypothesis. | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | Method of verification | | | | | | | K6_W02 | | The student has acquired the ability to solve technical problems based on the laws of mechanics and basic material strength analysis. | | | [SW3] Assessment of knowledge contained in written work and projects [SW1] Assessment of factual knowledge | | | | | | K6_U02 | | The student is able to perform strength analyzes of elements of structural systems and ship or yacht devices. | | | [SU4] Assessment of ability to use methods and tools [SU3] Assessment of ability to use knowledge gained from the subject [SU2] Assessment of ability to analyse information | | | | Data wydruku: 19.04.2024 20:10 Strona 1 z 2 | Subject contents | Basics assumptions and description of the Strength of Materials problems. State of stress and strain: general state of stress and strains, plane stress and plane strain states. Physical relationships between stresses and strains. Hooke's law. Axial tension and compression of the rod. The internal forces. Statically determinate structures: beams, trusses and frames,frame-truss systems. Cross-sectional axial forces, shear forces, bending moments, torsional moments. Moments of inertia of plane figures. Bending of beams. Torsion of monolithic and thin-walled bars. Eccentric tension (compression) of the bar. Shear stresses in bending problems. Bending line of beam. Euler's equation. Buckling of axially compressed rods. Strength hypothesises. Complex stress problems. Tendons - ropes. | | | | | | |--|--|--|-------------------------------|--|--|--| | Prerequisites and co-requisites | The student has passed the following subjects: - Technique Mechanic I | | | | | | | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | and criteria | exercise | 50.0% | 50.0% | | | | | | laboratory | 50.0% | 20.0% | | | | | | exam | 50.0% | 30.0% | | | | | Recommended reading | Supplementary literature | Hibbeler R.G.: Mechanics of materials, Prentice-Hall Int. Inc., 1994, ISBN 0-13-207028-6 Hibbeler R.G.: Statics and mechanics of materials, Prentice-Hall Int. Inc., ISBN 0023540915 Crayg Roy. R, Jr.: Mechanics of materials, John Willey & Sons, 1996, ISBN 0-471-50284-7 Beer F.P., Johnston E.R.: Mechanics of materials, Mc Graw-Hill Book Company, ISBN 0-07-004284-5 Ugural A.C., Fenster S.K.: Advanced Strength and Applied Elasticity, 1995, ISBN 0-13-137589-X Muvdi B.B., McNabb J.W.: Egineering Mechanics of Materials, Macmillan Publ. Comp. 1984, ISBN 0-02385770-6 Popov E. P.: Introduction to mechanics of solids, 1968, Prentice-Hall Int. Inc., Library of Congress Catalog Card Number 68-10135 Gould L. Ph.: Introduction to Linear Elasticity, Springer-Verlag, 1983, ISBN 0-387-90876-5 | | | | | | | eResources addresses | Adresy na platformie eNauczanie: Mechanika techniczna II, Projektowanie i budowa jachtów, zima 23/24 (PG_00056246) - Moodle ID: 33621 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=33621 | | | | | | Example issues/
example questions/
tasks being completed | What differs plane state of stresses of the plane state of strains? What determines elongation of the axially tensioned rod? In which case there is a beam skew bending problem? Describe and review strength hypotheses. What determines the critical force of the compressed rod? | | | | | | | Work placement | Not applicable | | | | | | Data wydruku: 19.04.2024 20:10 Strona 2 z 2