

。 GDAŃSK UNIVERSITY OF TECHNOLOGY

Subject card

Subject name and code	Physics I, PG_00049254							
Field of study	Spatial Development							
Date of commencement of studies	October 2023		Academic year of realisation of subject		2025/2026			
Education level	first-cycle studies		Subject group		Obligatory subject group in the field of study			
Mode of study	Full-time studies		Mode of delivery		at the university			
Year of study	3		Language of instruction		Polish			
Semester of study	6		ECTS credits		3.0			
Learning profile	general academic profile		Assessment form		assessment			
Conducting unit	Division Of Molecula Applied Physics And					ompute	er Science ->	Faculty Of
Name and surname of lecturer (lecturers)	Subject supervisor Teachers							
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	t	Seminar	SUM
	Number of study hours	15.0	15.0	0.0	0.0		0.0	30
	E-learning hours incl	uded: 0.0		•				
Learning activity and number of study hours						Self-study		SUM
	Number of study hours	30		5.0		40.0		75
Subject objectives	Mastering a specific cause-effect categor to spatial manageme	ies based on th						

Learning outcomes	Course outcome	Subject outcome	Method of verification	
	[K6_W03] has elementary knowledge in the field of mathematics and physics relating to issues related to space management, including the basic mathematical methods used in urban design, as well as analytical and design methods using information technology used in planning processes of settlement structures	Has elementary knowledge of the basics of physics relating to issues related to spatial management, including basic mathematical methods used in urban design, as well as analytical and design methods using IT techniques used in the processes of planning settlement structures.	[SW1] Assessment of factual knowledge [SW3] Assessment of knowledge contained in written work and projects	
	[K6_U01] has the ability to abstractly understand technical problems; applies basic mathematical and simulation methods in urban planning and spatial planning	Has the ability to understand technical problems in an abstract way; applies basic mathematical and simulation methods in urban design and spatial planning, using the knowledge of the basics of physics.	[SU3] Assessment of ability to use knowledge gained from the subject [SU5] Assessment of ability to present the results of task	
	[K6_K02] comprehending technical and non-technical aspects and effects of its activity, initiates various activities for the public interest, including co- organizing social projects, workshops and public debates on issues related to spatial management, within which it can reliably present a problem on a non-professional forum and explain the methods and solutions used	Understanding the technical and non-technical aspects and effects of his activities, she/he initiates various activities for the public interest, including co-organizing social projects, workshops and public debates on issues related to spatial management, within which she/he is able to reliably present the problem on a non- professional forum and explain the methods and solutions used, using arguments based on the knowledge of the basics of physics.	[SK4] Assessment of communication skills, including language correctness	
	K6_U04	demonstrates the ability to correctly interpret and assess the current state on the basis of data from various sources; formulates guidelines for urban design	[SU2] Assessment of ability to analyse information	

Subject contents	1. The scope and scale of physics: units and standards, unit conversion, dimensional analysis.				
	2. Vectors: scalars and vectors, coordinate systems and components of a vector, algebra of vectors, products of vectors.				
	3. Motion along a straight line: position, displacement and average velocity, instantaneous velocity and speed, average and instantaneous acceleration, motion with constant acceleration, free fall.				
	4. Motion in two and three dimensions: displacement and velocity vectors, acceleration vector, projectile motion, uniform circular motion.				
	5. Newton's laws of motion: forces, first, second and third laws of motion, mass and weight, common forces, drawing free-body diagrams.				
	6. Applications of Newton's laws: friction, centripetal force, drag force.				
	7. Work and kinetic energy, work-energy theorem, power.				
	8. Potential energy and conservation of energy, sources of energy.				
	9. Linear momentum, impulse and collisions.				
	10. Fixed-axis rotation: rotational variables, rotation with constant angular acceleration, moment of inertia and rotational kinetic energy, Newton's second law of rotation, work and power for rotational motion.				
	11. Static equilibrium and elasticity: conditions for static equilibrium, stress, strain and elastic modulus.				
	12. Fluid mechanics: fluids, density, and pressure, measuring pressure, Pascal's principle and hydraulics, Archimedes' principle and buoyancy, fluid dynamics, Bernoulli's equation, viscosity and turbulence.				
	13. Oscillations: simple harmonic motion, energy in simple harmonic motion, pendulums, damped oscillations, forced oscillations, resonance.				
	14. Waves: traveling waves, mathematics of waves, energy and power of a wave, interference of waves, standing waves and resonance, sound waves, speed of sound, normal modes of a sound standing wave.				
Prerequisites and co-requisites	Basic knowledge of high school physics. Knowledge of the mathematical apparatus at the level of engineering studies.				
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade		
	Assessment of a written work on a given topic	0.0%	75.0%		
	Active participation in classes	0.0%	25.0%		
Recommended reading	Basic literature	1. University Physics by Open Stax			
	Supplementary literature	1. David Halliday, Robert Resnick, Jearl Walker, Fundamentals of Physics, John Villey & Sons, 2001			
	eResources addresses	Adresy na platformie eNauczanie:			

Example issues/ example questions/ tasks being completed	1. Determine the parameters for the movement of the passenger elevator as desired for a four-story and forty-story building.
	2. Determine whether the slope of the roofs of the designed buildings is significant in areas with particularly heavy rainfall.
	3. Determine whether the slope of the roofs of the designed buildings is significant in high winds.
	4. Determine whether the distance between frontages on opposite sides of the street in the place of strong winds affects the comfort of building use. If so, when is the problem most significant?
Work placement	Not applicable

Document generated electronically. Does not require a seal or signature.