

GDAŃSK UNIVERSITY

Subject card

Subject name and code	Technical Thermodynamics 2, PG_00042058							
Field of study	Power Engineering, Power Engineering							
Date of commencement of studies	October 2023		Academic year of realisation of subject			2024/2025		
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study		
						Subject group related to scientific research in the field of study		
Mode of study	Full-time studies		Mode of delivery			at the university		
Year of study	2		Language of instruction		English			
Semester of study	4		ECTS credits		3.0			
Learning profile	general academic profile		Assessment form		assessment			
Conducting unit	Department of Energy and Industrial Apparatus -> Faculty of Mechanical Engineering and Ship Technology							
Name and surname	Subject supervisor		prof. dr hab. inż. Dariusz Mikielewicz					
of lecturer (lecturers)	Teachers							
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Project		Seminar	SUM
	Number of study hours	15.0	0.0	15.0	0.0		0.0	30
	E-learning hours included: 0.0							
Learning activity and number of study hours	Learning activity	Participation i classes incluc		Participation in consultation hours		Self-study		SUM
	Number of study hours	30		5.0		40.0		75
Subject objectives	Familiarisation with advanced topics of thermodynamics							

Learning outcomes	Course outcome	Subject outcome	Method of verification			
	[K6_U05] is able to formulate and carry out energy balances in devices and energy systems, also perform an energy audit of a simple building object, is able to perform a preliminary profitability analysis of a planned energy investment	knows the characteristics of moist air and its processes, combustion reactions and its kinetics, knows the basic laws of heat transfer.	[SU3] Assessment of ability to use knowledge gained from the subject			
	[K6_W02] has a basic knowledge of physics (including optics, electricity and magnetism), chemistry, technical thermodynamics, fluid mechanics and general mechanics needed to understand and describe the basic phenomena occurring in devices and systems, energy plants and transmission networks and their environment	knows the basics of combustion, moist air, heat transfer, and the Joule Thomson effect	[SW1] Assessment of factual knowledge			
	[K6_W15] knows and understands the basic quantities characteristic methods for thermodynamics, fluid mechanics and hydraulics, hydrology; knows the calculation methods and IT tools necessary to analyse the results of laboratory and field work	Passed the demonstration labs in the course and completed the reports on these exercises.	[SW3] Assessment of knowledge contained in written work and projects			
	[K6_U06] is able to use the basic knowledge on the operation of energy equipment in the field of thermal power plants, thermal and energy and heating systems, combustion engines, compressors and rotating machines to assess the technical condition of the system	is generally familiar with methods of determining the heat transfer surface area in exchangers	[SU4] Assessment of ability to use methods and tools			
Subject contents	LECTURE: Gas mixtures and moist gases. Mollier diagram and the basic moist air processes. Maxwell"s thermodynamic equations. Elements of combustion thermodynamics. Fundamentals of refrigeration. Fundamentals of heat transfer. LABORATORIES: Gas analysis. Determination of calorific value of solid fuels and gases. The energy balance of the water boiler and heat exchanger (recuperator). Testing of the refrigerating unit. Testing of the air conditioning central unit. Testing of the fan.					
Prerequisites and co-requisites	Thermodynamics 1					
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade			
	exam	56.0%	67.0%			
	laboratory	56.0%	33.0%			
Recommended reading	Basic literature	 M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of Engineering Thermodynamics 8th Ed., Wiley, 2014 Y. Cengel, M. Boles, Thermodynamics An Engineering 				
	Supplementary literature	Approach, 8th Edition, Wiley, 2014 Any textbook in thermodynamics				
	eResources addresses	Adresy na platformie eNauczanie:				
		אטובאי וום אומווטוווווי פואמעכבמוווי.				

tasks being completed	 Present and discuss known mechanisms of heat transfer on the example of overall heat transfer through a multilayer wall separating two fluids with different temperatures. Define the thermal resistance due to conduction, convection and overall heat transfer. Discuss how to include the effect of fouling on overall thermal resistance. Define thermal resistance due to conduction, convection and overall heat transfer. Define to floagnithmic mean temperature difference and temperature distribution in the parallel and counter-current heat exchangers. Define specific humidity and relative humidity. What is a difference? What is saturation temperature? Construct sample of psychrometric chart. What the lines represent? Describe graphically on a psychrometric chart all changes in the properties of air The dry-bub and wet-bub temperatures in a classroom are 24degC and 16 degC, respectively. Determine (at psychrometric Chart Construction of Psychrometric Chart Design and operation of Linde-Hampson liquifier with representation of the process on a thermodynamic diagram. Definition of inversion point and inversion curve. What is the Joule-Thomson effect? The purpose and the coefficient of this effect. Definition of combustion process The stages of the solid fuel combustion The main characteristics of the flames Describe what is air excess number and how we can calculate it What is the difference between adiabatic flame temperature and real flame temperature
Work placement	Not applicable