Subject card

| Subject name and code | Architectural geometry, PG_00061211 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field of study | Architecture |  |  |  |  |  |  |
| Date of commencement of studies | October 2023 |  | Academic year of realisation of subject |  |  | 2023/2024 |  |
| Education level | first-cycle studies |  | Subject group |  |  | Obligatory subject group in the field of study |  |
| Mode of study | Full-time studies |  | Mode of delivery |  |  | at the university |  |
| Year of study | 1 |  | Language of instruction |  |  | Polish |  |
| Semester of study | 2 |  | ECTS credits |  |  | 2.0 |  |
| Learning profile | general academic profile |  | Assessment form |  |  | exam |  |
| Conducting unit | Faculty of Architecture |  |  |  |  |  |  |
| Name and surname of lecturer (lecturers) | Subject supervisor |  | dr inż. arch. Anna Wancław |  |  |  |  |
|  | Teachers |  | dr inż. arch. Anna Wancław mgr inż. arch. Barbara Chomicka mgr inż. arch. Michał Malewczyk |  |  |  |  |
| Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Project | Seminar | SUM |
|  | Number of study hours | 15.0 | 0.0 | 0.0 | 15.0 | 0.0 | 30 |
|  | E-learning hours included: 0.0 |  |  |  |  |  |  |
| Learning activity and number of study hours | Learning activity | Participation in didactic classes included in study plan |  | Participation in consultation hours |  | Self-study | SUM |
|  | Number of study hours | 30 |  | 4.0 |  | 16.0 | 50 |
| Subject objectives | The development of spatial vision and the ability to apply it in the architectural design, skills in using axonometric drawing and perspective. |  |  |  |  |  |  |
| Learning outcomes | Course outcome |  | Subject outcome |  |  | Method of verification |  |
|  | [K6_U04] is able to use analytical methods to formulate and solve project tasks |  | He is able to present the effects of work attractively, also using popular digital programs. |  |  | [SU5] Assessment of ability to present the results of task [SU4] Assessment of ability to use methods and tools [SU3] Assessment of ability to use knowledge gained from the subject |  |
|  | [K6_W01] knows and understands construction problems, building and engineering issues related to building design; principles, solutions, constructions and building materials used in simple engineering tasks in the field of architectural and urban design |  | Correctly constructs and reads spatial objects (including curves and surfaces) in different types of projections, also using popular digital programs; with their help solves simple spatial problems. |  |  | [SW1] Assessment of factual knowledge |  |


| Subject contents | lectures (10 meetings, 1.5 teaching hours): <br> 1. Perspective - assumptions of the method. One-point perspective, circle in perspecrive <br> 2. Orthogonal perspective. Shadows in prespective <br> 3. Settings in digital perspective <br> 4. Curves - geometry of curves, polynomial curves of degree 2 and 3, Bezier curves of any degree, B-spline curves and Nurbs <br> 5. Surfaces - surface geometry, polynomial surfaces of degree 2 <br> 6. Stage II surfaces and their cross-sections. Conical curves. Affinity relationship elipse with circle <br> 7. Test 1: coted projection - basic structures, roofs (projections, elevations, sections), shadows, elements land development <br> 8. Surfaces Béziers of any degree, B-splines and Nurbs, surfaces defined by curves, mesh and subdivision representations <br> 9. Penetration of surfaces, construction of vaults, operations on surfaces and solids. 3D modeling methods direct and parametric <br> 10. Test 2: perspective, surface sections, surface intersection, ruled surfaces <br> Drawing sheets: <br> 1, 2. Sheet 1 roofs projection, cross-section, 3D model <br> 3,4 . Sheet 2 shading of buildings <br> 5, 6. Sheet 3 land development project <br> 7. Sheet 4 one point perspective, circle in perspective, shadow for a ray not parallel to the projection plane <br> 8, 9 . Sheet 5 vertical perspective, shadow for a ray parallel to the projection plane <br> Sheet 6 homework - perspective of your own project, setting the assumptions of the perspective <br> 10. Sheet 7 conical sections <br> 11, 12. Laboratory 1 geodesic dome <br> 13, 14. Laboratory 2 conical sections, ruled surfaces <br> 15. Laboratory 3 surface intersection |
| :---: | :---: |
| Prerequisites and co-requisites |  |


| Assessment methods and criteria | Subject passing criteria | Passing threshold | Percentage of the final grade |
| :---: | :---: | :---: | :---: |
|  | Quality of drawings | 100.0\% | 25.0\% |
|  | Test 1 and 2 | 51.0\% | 25.0\% |
|  | Final exam | 51.0\% | 50.0\% |
| Recommended reading | Basic literature | H. Pottmann, A. Asperl, M. Hofer, A. Kilian, Architectural geometry, Bentley Institute Press 2007 <br> Górska R., Geometria wykreślna, Kraków 2015 |  |
|  | Supplementary literature | Otto F.E., Geometria wykres <br> Jankowski W.,Geometria wy <br> Grochowski B., Geometria <br> Bruzda J., Szkice Perspekty <br> Romaszkiewicz-Białas T., $P$ Wrocław, 1991 | a z perspektywą stosowana, <br> w architekturze, Warszawa, 1971 <br> ywa praktyczna dla architektów, |
|  | eResources addresses | Adresy na platformie eNauczanie: Geometria dla architekta 2023/2024 - Moodle ID: 28566 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=28566 |  |
| Example issues/ example questions/ tasks being completed | 1. Constructs the perspetcive <br> 2. According to the given light the projection of the sphere <br> 3. Create a ruled surface in pa | given plans of the objects and <br> onstruct the own shadow of a <br> tric mode (Grasshopper) | ow according to a given light ray. <br> and the shadw cast on the plane of |
| Work placement | Not applicable |  |  |

