

GDAŃSK UNIVERSITY

Subject card

Subject name and code	Introduction to logic and set theory, PG_00021021							
Field of study	Mathematics							
Date of commencement of studies	October 2023		Academic year of realisation of subject			2023/2024		
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study		
						Subject group related to scientific research in the field of study		
Mode of study	Full-time studies		Mode of delivery			at the university		
Year of study	1		Language	Language of instruction		Polish		
Semester of study	1		ECTS credits		5.0			
Learning profile	general academic profile		Assessme	Assessment form		exam		
Conducting unit	Department of Probability Theory and Biomathematics -> Faculty of Applied Physics and Mathematics							
Name and surname of lecturer (lecturers)	Subject supervisor		dr Joanna Cyman					
	Teachers		dr Joanna Cyman					
			dr Maryna Shcholokova					
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	t	Seminar	SUM
	Number of study hours	30.0	30.0	0.0	0.0		0.0	60
	E-learning hours included: 0.0							
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study		SUM
	Number of study hours	60		5.0		60.0		125
Subject objectives	Introduction of the b	asic concepts of	of basic mather	natics necessa	ry for fur	ther stu	udy of mather	natical objects.

Learning outcomes	Course outcome	Subject outcome	Method of verification				
	K6_U02	Student can apply mathematical induction and strong (complete) mathematical induction in tasks. He can define recursive relationships and proves their correctness.	[SU2] Assessment of ability to analyse information [SU3] Assessment of ability to use knowledge gained from the subject [SU4] Assessment of ability to use methods and tools				
	K6_W02	Student knows the basic types of mathematical proofs and uses them properly. He can present classic proofs by contradiction, for example, proof that the square root of 2 is not rational or Euclid's theorem that asserts that there are infinitely many prime numbers.	[SW2] Assessment of knowledge contained in presentation [SW3] Assessment of knowledge contained in written work and projects				
	K6_U01	The student is able to present in an understandable way, in speech and writing, correct mathematical reasoning, can formulate theorems and definitions. He can establish equivalences between particular formulas. He knows and correctly applies the laws of quantifiers.	[SU2] Assessment of ability to analyse information [SU3] Assessment of ability to use knowledge gained from the subject [SU4] Assessment of ability to use methods and tools				
	K6_U03	Student knows the concept of cardinality of a set. He knows different types of infinity. He can prove that a given set is countable or show that it is not countable. He also knows the relations of partial and linear order in sets and correctly proves whether a given set is an orderly set.	[SU2] Assessment of ability to analyse information [SU3] Assessment of ability to use knowledge gained from the subject [SU4] Assessment of ability to use methods and tools				
	K6_W06	Student knows and can apply selected tautology and rules of set.	[SW1] Assessment of factual knowledge [SW3] Assessment of knowledge contained in written work and projects				
Subject contents	 Propositional Calculus. Logical connectives. Tautologies. Square of opposition. Rules of inference. Methods of proof. Reasoning methods and argumentation. Sets. Axiom of extensionality. Subsets. Basic operations. Cartesian product of sets. First order predicate calculus. Union and intersection family of sets. Field of sets. Axiomatic set theory. Principle of Mathematical Induction and recurrence relation. Natural numbers. Principle of minimum. Various version of principle of mathematical induction. Examples of recursions. Functions. Definition of a function. Examples of functions. Properties of functions. Operations on functions. Inverse function. Images and preimages. 						
	Relations. Formal definitions. Operations on relations. Basic properties and kinds of relations. Equivalence relation. Partially ordered set. Well-ordered set. Totally ordered set. The Cardinality of Sets. Comparing sets. Cardinalities of sets. CantorBernsteinSchroeder theorem. Countable and uncountable sets. Cardinality of the continuum. Continuum hypothesis.						
Prerequisites and co-requisites	Knowledge of mathematics on the secondary school level.						
Assessment methods and criteria	Subject passing criteria Midterm colloquium Written exam	Passing threshold 50.0% 50.0%	Percentage of the final grade 54.0% 40.0%				
Recommended reading	Activity Basic literature	30.0% 6.0% • H. Rasiowa " Wstęp do matematyki współczesnej"; Wydawnictw Naukowe PWN, Warszawa, 2005. J. Topp "Wstęp do matematyki", Wydawnictwo Politechniki Gdańskiej; Wydawnictwo Politechniki Gdańskiej, Gdańsk 2009 • K. Kuratowski "Wstęp do teorii mnogości i topologii";Wydawnictwo Naukowe PWN, Warszawa, 2004.					

	Supplementary literature	 K. Ross, Ch. Wright "Matematyka dyskretna"; Wydawnictwo Naukowe PWN, Warszawa, 2006. J. Kraszewski "Wstęp do matematyki"; WNT, Warszawa, 2009. W. Guzicki, P. Zakrzewski "Wykłady ze wstępu do matematyki"; Wydawnictwo Naukowe PWN, Warszawa, 2005. W. Guzicki, P. Zakrzewski "Wstęp do matematyki. Zbiór zadań"; Wydawnictwo Naukowe PWN, Warszawa, 2005. W. Guzicki, P. Zakrzewski "Wstęp do matematyki. Zbiór zadań"; Wydawnictwo Naukowe PWN, Warszawa, 2005. W. Marek, J. Onyszkiewicz "Elementy logiki i teorii mnogości w zadaniach"; Wydawnictwo Naukowe PWN, Warszawa, 2006. 			
	eResources addresses	Adresy na platformie eNauczanie: Wstęp do logiki i teorii mnogości 2023/2024 - Moodle ID: 29124 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=29124			
Example issues/ example questions/ tasks being completed	1. Express a sentence (\sim p\vee q)\Rightarrow \sim r with a) a Sheffer stroke; b) a Peirce's arrow. Write used tautologies.				
	2. Express propositional formula ((p\wedge q)\Rightarrow \sim r)\Rightarrow ((p\Rightarrow \sim r) \Rightarrow p in disjunctive normal form.				
	 3. Determine the power set of A={\emptyset, 3, {emptyset, 3}, {emptyset}. 4. Prove by induction that \forall_{n\in N, n\geq 2} \frac 1{n+1}+\frac 1{n+2}+\frac 1{n+3}++\frac 1{n+n} >\frac{13}{24}. 5. Prove by induction that for a natural number n \ geq 72, there are integers x and y such that n = 13x + 7 6. We define recursively a sequence (a_n) by: a_0=a_1=a_2=1 and a_n=a_{n-1}+a_{n-3} dla n\geq 3. Prove that a_n\geq 2a_{n-2} for all n\geq 3 and prove that a_n\geq (\sqrt 2)^{n-2} for all n\geq 2. 				
	7. Given is a function f: A \ times A \ rightarrow A, where f (x, y) = 5x +7 y for x, y \in A. Examine whether f is injective function or surjective function, and then find f ({1,2,3 } \ times {3,7}) and f ^ {-1} ({0,7}), if: (a) a = N; (b) A = Z.				
	8. We assume that for numbers a, b equivalence relation in the set Z. De	$\$ in Z we have a R b if and only if 7 (3a + 4b). Prove that R is an termine the equivalence classes of numbers 0 and 1			
	9. Prove that the set of N-{0,2,7} ha	s the same cardinality as the set N.			
	10. Prove that the line (-1; 1) has the same cardinality as the line (-1; 1>.				
Work placement	Not applicable				