Subject card

Subject name and code	Introduction to logic and set theory, PG_00021021						
Field of study	Mathematics						
Date of commencement of studies	October 2023		Academic year of realisation of subject			2023/2024	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study Subject group related to scientific research in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	1		ECTS credits			5.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Department of Probability Theory and Biomathematics -> Faculty of Applied Physics and Mathematics						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Joanna Cyman				
	Teachers		dr Joanna Cyman dr Maryna Shcholokova				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Project	Seminar	SUM
	Number of study hours	30.0	30.0	0.0	0.0	0.0	60
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	60		5.0		60.0	125
Subject objectives	Introduction of the basic concepts of basic mathematics necessary for further study of mathematical objects.						

Learning outcomes	Course outcome	Subject outcome	Method of verification
	K6_U02	Student can apply mathematical induction and strong (complete) mathematical induction in tasks. He can define recursive relationships and proves their correctness.	[SU2] Assessment of ability to analyse information [SU3] Assessment of ability to use knowledge gained from the subject [SU4] Assessment of ability to use methods and tools
	K6_W02	Student knows the basic types of mathematical proofs and uses them properly. He can present classic proofs by contradiction, for example, proof that the square root of 2 is not rational or Euclid's theorem that asserts that there are infinitely many prime numbers.	[SW2] Assessment of knowledge contained in presentation [SW3] Assessment of knowledge contained in written work and projects
	K6_U01	The student is able to present in an understandable way, in speech and writing, correct mathematical reasoning, can formulate theorems and definitions. He can establish equivalences between particular formulas. He knows and correctly applies the laws of quantifiers.	[SU2] Assessment of ability to analyse information [SU3] Assessment of ability to use knowledge gained from the subject [SU4] Assessment of ability to use methods and tools
	K6_U03	Student knows the concept of cardinality of a set. He knows different types of infinity. He can prove that a given set is countable or show that it is not countable. He also knows the relations of partial and linear order in sets and correctly proves whether a given set is an orderly set.	[SU2] Assessment of ability to analyse information [SU3] Assessment of ability to use knowledge gained from the subject [SU4] Assessment of ability to use methods and tools
	K6_W06	Student knows and can apply selected tautology and rules of set.	[SW1] Assessment of factual knowledge [SW3] Assessment of knowledge contained in written work and projects
Subject contents	Propositional Calculus. Logical connectives. Tautologies. Square of opposition. Rules of inference. Methods of proof. Reasoning methods and argumentation.		
	Sets. Axiom of extensionality. Subsets. Basic operations. Cartesian product of sets. First order predicate calculus. Union and intersection family of sets. Field of sets. Axiomatic set theory.		
	Principle of Mathematical Induction and recurrence relation. Natural numbers. Principle of minimum. Various version of principle of mathematical induction. Examples of recursions.		
	Functions. Definition of a function. Examples of functions. Properties of functions. Operations on functions. Inverse function. Images and preimages.		
	Relations. Formal definitions. Operations on relations. Basic properties and kinds of relations. Equivalence relation. Partially ordered set. Well-ordered set. Totally ordered set.		
	The Cardinality of Sets. Comparing sets. Cardinalities of sets. CantorBernsteinSchroeder theorem. Countable and uncountable sets. Cardinality of the continuum. Continuum hypothesis.		
Prerequisites and co-requisites	Knowledge of mathematics on the secondary school level.		
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Midterm colloquium	50.0\%	54.0\%
	Written exam	50.0\%	40.0\%
	Activity	30.0\%	6.0\%
Recommended reading	Basic literature	- H. Rasiowa " Wstęp do matem Naukowe PWN, Warszawa, 20 - J. Topp "Wstęp do matematyki" Gdańskiej; Wydawnictwo Polite - K. Kuratowski "Wstęp do teorii Naukowe PWN, Warszawa, 20	atyki współczesnej"; Wydawnictwo 05. ", Wydawnictwo Politechniki echniki Gdańskiej, Gdańsk 2009. mnogości i topologii";Wydawnictwo 04.

