Subject card | Subject name and code | Technical electrochemistry, PG_00058345 | | | | | | | | | |---|---|--|--|-------------------------------------|--------|---|---------|-----|--| | Field of study | Hydrogen Technologies and Electromobility | | | | | | | | | | Date of commencement of studies | October 2023 | | Academic year of realisation of subject | | | 2024/2025 | | | | | Education level | first-cycle studies | | Subject group | | | Obligatory subject group in the field of study Subject group related to scientific research in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 2 | | Language of instruction | | | Polish | | | | | Semester of study | 3 | | ECTS credits | | | 4.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Department of Electrochemistry, Corrosion and Materials Engineering -> Faculty of Chemistry | | | | | | | | | | Name and surname | Subject supervisor | | dr hab. inż. Paweł Ślepski | | | | | | | | of lecturer (lecturers) | Teachers | | dr hab. inż. P | | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | | Number of study hours | 15.0 | 0.0 | 30.0 | 0.0 | | 0.0 | 45 | | | | E-learning hours included: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in didactic classes included in study plan | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 45 | | 7.0 | | 48.0 | | 100 | | | Subject objectives | The aim of the course is for the student to master the knowledge of applications of electrochemical methods in industry. In addition, the student will master the ability to independently carry out electrochemical processes and analyses with industrial applications on a laboratory scale. | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | [K6_U02] can work individually and in a team, can communicate using various techniques in a professional environment, as well as document and analyze the results of their work, can estimate the time needed to perform the entrusted task | | Prepares and presents results from an electrochemical process. | | | [SU5] Assessment of ability to
present the results of task
[SU1] Assessment of task
fulfilment | | | | | | [K6_U13] can use properly selected methods and devices enabling the measurement of basic quantities characterizing materials and technological processes | | Controls selected technical electrochemical processes. | | | [SU4] Assessment of ability to
use methods and tools
[SU2] Assessment of ability to
analyse information | | | | | | [K6_W19] has knowledge of the properties of electrolyte solutions, electrode processes and some electrochemical processes relevant to industrial practice and the application of electrochemistry in practice | | Selects the appropriate electrochemical technology to solve a technological problem. | | | [SW1] Assessment of factual knowledge [SW3] Assessment of knowledge contained in written work and projects | | | | Data wydruku: 18.07.2024 10:33 Strona 1 z 2 | Subject contents | Lecture: Application of electrochemistry in corrosion monitoring and protection: electrochemical monitoring of corrosion rates, cathodic and anodic protection of metallic industrial structures. Electrochemical application of metallic coatings. Electrochemical wastewater treatment: electrocoagulation, electro-oxidation of organic compounds. Laboratory: Monitoring of corrosion rate by polarisation resistance method. Analysis of potentiodynamic curves to determine corrosion rate and type of control. Anodic and cathodic protection of metallic materials. Application of anodic and cathodic metallic coatings. Study of the effectiveness of the electrocoagulation process. | | | | | | | |--|--|-------------------|-------------------------------|--|--|--|--| | Prerequisites and co-requisites | The student has a basic knowledge of the mathematics of physics and the fundamentals of electrochemistry. The student has the ability to perform laboratory experiments in electrochemistry. | | | | | | | | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | | and criteria | written exam | 60.0% | 60.0% | | | | | | | report | 100.0% | 40.0% | | | | | | Recommended reading | R. Dylewski, W. Gnot, M. Gor Gliwice 1999. H. Bala; Korozja materiałów - 2000. Supplementary literature journal: "Journal of Applied El | | | | | | | | Evernle issues/ | rates, na patiennie ortauszanie. | | | | | | | | Example issues/
example questions/
tasks being completed | electrochemical protection of steel in a sulphuric acid environment metallization - acid baths electro-oxidation of paracetamol | | | | | | | | Work placement | Not applicable | | | | | | | Data wydruku: 18.07.2024 10:33 Strona 2 z 2