Subject card

Subject name and code	Discrete Mathematics, PG_00058928						
Field of study	Informatics						
Date of commencement of studies	October 2023		Academic year of realisation of subject			2024/2025	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study Subject group related to scientific research in the field of study	
Mode of study	Part-time studies		Mode of delivery			at the university	
Year of study	2		Language of instruction			Polish	
Semester of study	3		ECTS credits			4.0	
Learning profile	general academic profile		Assessment form			assessment	
Conducting unit	Department of Algorithms and Systems Modelling -> Faculty of Electronics, Telecommunications and Informatics						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Paweł Obszarski				
	Teachers		dr Paweł Obszarski				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	Seminar	SUM
	Number of study hours	15.0	15.0	0.0	0.0	0.0	30
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity Participation in didactic classes included in study plan			Participation in consultation hours		Self-study	SUM
	Number of study hours 30			4.0		66.0	100
Subject objectives	Getting familiar with the mathematical notation and techniques useful in discrete optimization.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	[K6_U01] can apply mathematical knowledge to formulate and solve complex and non-typical problems related to the field of study and perform tasks, in an innovative way, in not entirely predictable conditions, by:n- appropriate selection of sources and information obtained from them, assessment, critical analysis and synthesis of this information, n selection and application of appropriate methods and toolsn		Knows how to use in practice knowledge from graph theory, set theory and other			[SU4] Assessment of ability to use methods and tools	
	[K6_W01] Knows and understands, to an advanced extent, mathematics necessary to formulate and solve simple issues related to the field of study		Learns about numerous algorithmic aspects of set theory, combinatorics and graph theory			[SW1] Assessment of factual knowledge	
	[K6_W41] Knows and understands, to an advanced extent, the operation and evaluation criteria of data processing, storage and transfer methods, including computational algorithms, artificial intelligence and data mining		Knows elements of combinatorisc and graph theory crucial in big data analysis.			[SW1] Assessment of factual knowledge	
	[K6_K02] is ready to critically assēss possessed knowledge and acknowledge the importance of knowledge in solving cognitive and practical problems		Learns about numerous mathematical models and their practical applications.			[SK2] Assessment of progress of work [SK5] Assessment of ability to solve problems that arise in practice	

Subject contents	Algebra of sets Logic: tautologies, predicates Mathematical induction Binary relations: equivalence r Binary relations: partial order, Binary relations: transitive clos Counting: functions, configura Graph Theory: notation, basic Graph Theory: Eulerian graph Graph Theory: Hamiltonian gra Graph Theory: properties of tr Graph Theory: planarity Graph coloring	n, equiivalence classes diagrams equivalence closure partitions, nese Postman Problem Traveling Salesman Problem	
Prerequisites and co-requisites			
Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade
and criteria	Written exam	51.0\%	100.0\%
Recommended reading	Basic literature	[1] K. A. Ross, C. R. B. Wright, Matematyka dyskretna, PWN, Warszawa 1996. [2] R. L. Graham, D. E. Knuth, O. Patashnik, Matematyka konkretna, PWN, Warszawa 1996. [3] W. Lipski, W. Marek, Analiza kombinatoryczna, PWN, Warszawa 1986. [4] H. Rasiowa, Wstęp do matematyki współczesnej, PWN, Warszawa 1984. [5] Robin J. Wilson, Wprowadzenie do teorii grafów, PWN, Warszawa 2000.	
	Supplementary literature	No requirements	
	eResources addresses	Adresy na platformie eNauczanie:	
Example issues/ example questions/ tasks being completed			
Work placement	Not applicable		

