Subject card

Subject name and code	Advanced Mathematics, PG_00047393						
Field of study	Electronics and Telecommunications						
Date of commencement of studies	October 2023		Academic year of realisation of subject			2023/2024	
Education level	second-cycle studies		Subject group			Obligatory subject group in the field of study Subject group related to scientific research in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			English	
Semester of study	2		ECTS credits			6.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Magdalena Musielak				
	Teachers		dr Magdalena Musielak				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Project	Seminar	SUM
	Number of study hours	30.0	15.0	0.0	0.0	0.0	45
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	45		15.0		90.0	150
Subject objectives	The use of specialized mathematical tools to technical subjects.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	[K7_W01] Knows and understands, to an increased extent, mathematics to the extent necessary to formulate and solve complex issues related to the field of study.		Student knows the basic concepts and theorems of linear algebra, knows the basics of functional analysis, knows the types of differential and integral equations, knows theorems and techniques of solving ordinary differential equations and partial differential equations.			[SW1] Assessment of factual knowledge	
	[K7_U01] can apply mathematical knowledge to formulate and solve complex and non-typical problems related to the field of study by:nappropriate selection of source information and its critical analysis, synthesis, creative interpretation and presentation,napplication of appropriate methods and toolsn		Student uses the notion of linear space, linear transformation, determines matrices of linear transformations in different bases, demonstrates methods for solving differential and integral equations, analyzes stability of linear and nonlinear systems of differential equations.			[SU4] Assessment of ability to use methods and tools	

Subject contents	Linear space. Basic concepts. to the base. Linear operators. Hilbert Space. Space L²[-,]. First order ordinary differential Lagrange equation and Clairau reducible to first order. Higher equations. Second order linea equations.Qualitative analysis Integral equations. Basic termi differential equations into integ approximations, iterated kerne Partial differential equations. B differential equations of second Classification of equations. Re Wave equation. Heat conduction	r subspace. Basis and dime concepts. Matrix of linear tr tions. Basic concepts. Separ uation. Exact equations. Inter linear equations with consta ations with nonconstant coef utions of ordinary differentia . Classification. Volterra an uations. Methods for solving olvent. concepts. First order partial . Methods to solve linear p equations to canonical form uation. Laplace equation.	linear space. Coordinates of vector ation. Change of basis matrix. uations. Bernoulli equation. factor. Second order equations cients. Higher order Euler Systems of differential ns. Lapunov stability. Im equation. Transforming equations. Successive al equations. Linear partial rential equations of second order. equation in one dimensional case.
Prerequisites and co-requisites			
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Homework assignments	0.0\%	20.0\%
	Written examination	50.0\%	80.0\%
Recommended reading	Basic literature	1. Roman, S., Advanced Linear Algebra, Third Edition, Springer 2. Tveito, A., Winther, R., Introduction to Partial Differential Equations, Springer 3. L. C. Evans, Partial Differential Equations, AMS. 4. Hochstadt, H., Integral Equations, A Wiley-Interscience Publications 5. M.I.Krasnov, G.I.Makarenko, A.I. Kiselev, Problems and exercises in the calculus of variations., Mir Publishers. 6. Debnath, L., Mikusinski, P., Hilbert Spaces with Applications, Third Edition, Elsevier Academic Press	
	Supplementary literature	1. Simmons, George F., Differential equations with applications and historical notes, Third Edition, CRC Press, Taylor \& Francis Group 2. Asmar, Nakhle H., Partial Differential Equations and Boundary Value Problems with Fourier Series, 2nd Edition, Pearson	
	eResources addresses	Adresy na platformie eNauczanie: WETI - EiT II st. - Advanced Mathematics 2023/24 (M.Musielak) - Moodle ID: 37595 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=37595	
Example issues/ example questions/ tasks being completed	1. Verify if the given transformation $T: R_{2 \times 2} R_{2}[x]$ is linear. In case of positive answer find ker $T, i m T$, dim ker T, dim im T. T ([a b; c d])= ax²+(b-c)x+d (R2x2,+,') vector space of real matrices of order 2, with addition and scalar multiplications, $\left(\mathrm{R}_{2}[\mathrm{x}],+, \cdot\right)$ vector space of real polynomials of order at most 2 , with addition and scalar multiplications.) 2. Solve the following nonhomogeneous linear equation. $y^{\prime \prime \prime}+y^{\prime \prime}=(x-1) /\left(x^{2}\right)$. 3. Examine stability of equilibrium points of the system $\left\{x^{\prime}=x y+2 y^{\wedge} 2 ; y^{\prime}=(y-1)(x+2)\right.$ 4. Find the integral surface passing through given curve $(u) /(x)+y(u) /(y)=u^{2} y, y=t, y=t^{2}, u=1$. 5. Classify the equation and find its characteristics $\left({ }^{2} u\right) /\left(x^{2}\right)-2 \cos x\left({ }^{2} u\right) /(x y)-\left(3+\sin ^{2} x\right)\left({ }^{2} u\right) /\left(I y^{2}\right)-y$ $(u) /(y)=0$. 6. Find the resolvent kernel, if $K(x, t)=x^{2} t^{2} ; a=-1, b=1$.		
Work placement	Not applicable		

