

。 GDAŃSK UNIVERSITY OF TECHNOLOGY

Subject card

Subject name and code	Basics of Bioprocess Engineering, PG_00054703								
Field of study	Biotechnology								
Date of commencement of studies	October 2023		Academic year of realisation of subject			2024/	2024/2025		
Education level	first-cycle studies		Subject gro	oup			Obligatory subject group in the field of study		
Mode of study	Full-time studies		Mode of de	elivery		at the	university		
Year of study	2			Language of instruction			1		
Semester of study	4			ECTS credits					
Learning profile	general academic pro	ofile	Assessme	nt form		exam			
Conducting unit	Department of Proces	and Chemical	Technology ->	Faculty	of Che	of Chemistry			
Name and surname	Subject supervisor		dr hab. inż. D	onata Konopa	ka-Łysł	kawa			
of lecturer (lecturers)	Teachers								
Lesson types and methods	Lesson type	Lecture	Tutorial	Laboratory	Laboratory Project		Seminar	SUM	
of instruction	Number of study hours	30.0	0.0	0.0	30.0		0.0	60	
	E-learning hours inclu	uded: 0.0							
Learning activity and number of study hours	Learning activity	Participation i classes incluc		Participation in consultation hours		Self-study		SUM	
	Number of study hours	60		10.0		55.0		125	
Subject objectives	To familiarize students with the basic concepts of selected dynamic operations (fluid flows, mixing, filtration, settling of particles), mechanical operation (crushing, agglomeration) and the heat exchange. Presenting students the opportunities to use mathematical equations in the description of the unit operations used in chemical and bioprocess engineering. Developing students' computing skills for the relevant unit operations.								
Learning outcomes	Course out	Sub	ject outcome			Method of ve	erification		
	K6_U08		The student is able to indicate the pros and cons of known operations and processes and propose a solution to the problem related to the operations discussed in class.			[SU5] Assessment of ability to present the results of task [SU3] Assessment of ability to use knowledge gained from the subject [SU1] Assessment of task fulfilment			
	K6_W10		Student understands and explains fundamental definitions of selected dynamic operations, heat exchange and membrane processes			[SW3] Assessment of knowledge contained in written work and projects [SW2] Assessment of knowledge contained in presentation			
	K6_W09		The student has knowledge of separation processes used in biotechnology such as filtration, sedimentation, centrifugation and membrane processes			[SW3] Assessment of knowledge contained in written work and projects [SW1] Assessment of factual knowledge			
Subject contents	Fluid properties. Flow of ideal fluids. Flow of real fluids; flow resistance. Non-newtonian fluid flow. Multiphase flow. Separation of heterogeneous systems: sedimentation, filtration, centrifugation. Fluid mixing. Crushing and agglomeration. Heat transfer: conduction, free convection, forced convection, overall heat transfer. Membrane processes								
Prerequisites and co-requisites	Gas and liquid prope		problems of ph	ysical chemist	ry.				
Assessment methods	Subject passing criteria		Pass	Passing threshold			Percentage of the final grade		
and criteria	Written tests		60.0%			20.0%			
	Lecture - written exam		60.0%			40.0%			
	Miniprojects and project		60.0%			40.0%			

Example issues/ example issues/ example operations/ tasks being completed Draw and diagram of the same suspension were carried out; the first one using a filter with surface A and pressure p. the second one using the same filter (with surface A), but under pressure p. = 4 p.1. Compare the result of the filter color and the filter	Recommended reading	Basic literature	M. Serwiński: Zasady inżynierii chemicznej, WNT 1982					
S. Katah, J. Houriuchi, F. Yoshida: Biochemical Engineering, Wiley 2015. Supplementary literature D. W. Green (ed.): Perry's Chemical Engineers'Handbook, The McGrow-Hill Comp. Inc. (7th ed.) 1997 eResources addresses Adresy na platformie eNauczanie: 1. Draw a diagram of the injector and show how to determine the volumetric flow rate at which it will be possible to reach the maximum suction depth. The dimensions of the injector, i.e. the diameter of the water inlet pipe, nozzle diameter, overpressure in the inlet pipe, atmospheric pressure, and the temperature of the flowing water are known. Assume water is a perfect liquid. 2. Two filtrations of the same suspension were carried out: the first one using a filter with surface A and pressure p 1, the second one using the same filter (with surface A), but under pressure p 2 = 4 p 1. Compare the rates of filtrations and its efficiencies after time (the same for both filtrations). Assume that the resistance of the filter cloth and the time of additional operations can be neglected and the filter cake is incompressible. 3. Provide the principles of dimensional analysis. Using the dimensional analysis, present the procedure leading to the criterion equation for describing free settling, if it is known that the pressure soft the fluid on the settling particle depends on the settling velocity, the particle diameter, the density and viscosity of the fluid. 4. What is the ratio of the agitator rotation frequencies of the stirrer in two standard mixers of diameters D 1 and D 2 = 3D 1, respectively, if the specific power (power delivered per unit volume of liquid in the mixer) is the same and the mixing is in the laminar range/ turbulent range? 5. Draw the temperature distribution	Recommended reading	Basic illerature	 P. Lewicki (red.): Inżynieria procesowa i aparatura przemysłu spożywczego, WNT 2006 Z. Orzechowki, J. Prywer, R. Zarzycki: Mechanika płynów w inżynierii środowiska, WNT 2009 R. Zarzycki: Wymiana ciepła i ruch masy w inżynierii środowiska, WNT 2010 					
McGrow-Hill Comp. Inc. (7th ed.) 1997 eResources addresses Adresy na platformie eNauczanie: Example issues/ example questions/ tasks being completed 1. Draw a diagram of the injector and show how to determine the volumetric flow rate at which it will be possible to reach the maximum suction depth. The dimensions of the injector, i.e. the diameter of the water inlet pipe, nozzle diameter, overpressure in the inlet pipe, atmospheric pressure, and the temperature of the flowing water are known. Assume water is a perfect liquid. 2. Two filtrations of the same suspension were carried out: the first one using a filter with surface A and pressure p 1, the second one using the same filter (with surface A), but under pressure p 2 = 4 p 1. Compare the rates of filtrations and its efficiencies after time (the same for both filtrations). Assume that the resistance of the filter cloth and the time of additional operations can be neglected and the filter cake is incompressible. 3. Provide the principles of dimensional analysis. Using the dimensional analysis, present the procedure leading to the criterion equation for describing free settling, if it is known that the pressure exerted by the fluid on the settling particle depends on the settling velocity, the particle diameter, the density and viscosity of the fluid. 4. What is the ratio of the agitator rotation frequencies of the stirrer in two standard mixers of diameters D 1 and D 2 = 3D 1, respectively, if the specific power (power delivered per unit volume of liquid in the mixer) is the same and the mixing is in the laminar range/ turbulent range? 5. Draw the temperature distribution in the counter-current shell and tube heat exchanger when the heating			S. Katah, J. Houriuchi, F. Yoshida: Biochemical Engineering, Wiley					
 Example issues/ example questions/ tasks being completed 1. Draw a diagram of the injector and show how to determine the volumetric flow rate at which it will be possible to reach the maximum suction depth. The dimensions of the injector, i.e. the diameter of the water inlet pipe, nozzle diameter, overpressure in the inlet pipe, atmospheric pressure, and the temperature of the flowing water are known. Assume water is a perfect liquid. 2. Two filtrations of the same suspension were carried out: the first one using a filter with surface A and pressure p 1, the second one using the same filter (with surface A), but under pressure p z = 4 p 1. Compare the rates of filtrations and its efficiencies after time (the same for both filtrations). Assume that the resistance of the filter cloth and the time of additional operations can be neglected and the filter cake is incompressible. 3. Provide the principles of dimensional analysis. Using the dimensional analysis, present the procedure leading to the criterion equation for describing free settling, if it is known that the pressure exerted by the fluid on the settling particle depends on the settling velocity, the particle diameter, the density and viscosity of the fluid. 4. What is the ratio of the agitator rotation frequencies of the stirrer in two standard mixers of diameters D 1 and D 2 = 3D 1, respectively, if the specific power (power delivered per unit volume of liquid in the mixer) is the same and the mixing is in the laminar range/ turbulent range? 5. Draw the temperature distribution in the counter-current shell and tube heat exchanger when the heating 		Supplementary literature						
 example questions/ tasks being completed possible to reach the maximum suction depth. The dimensions of the injector, i.e. the diameter of the water inlet pipe, nozzle diameter, overpressure in the inlet pipe, atmospheric pressure, and the temperature of the flowing water are known. Assume water is a perfect liquid. 2. Two filtrations of the same suspension were carried out: the first one using a filter with surface A and pressure p 1, the second one using the same filter (with surface A), but under pressure p 2 = 4 p 1. Compare the rates of filtrations and its efficiencies after time (the same for both filtrations). Assume that the resistance of the filter cloth and the time of additional operations can be neglected and the filter cake is incompressible. 3. Provide the principles of dimensional analysis. Using the dimensional analysis, present the procedure leading to the criterion equation for describing free settling, if it is known that the pressure exerted by the fluid on the settling particle depends on the settling velocity, the particle diameter, the density and viscosity of the fluid. 4. What is the ratio of the agitator rotation frequencies of the stirrer in two standard mixers of diameters D 1 and D 2 = 3D 1, respectively, if the specific power (power delivered per unit volume of liquid in the mixer) is the same and the mixing is in the laminar range/ turbulent range? 5. Draw the temperature distribution in the counter-current shell and tube heat exchanger when the heating 		eResources addresses	Adresy na platformie eNauczanie:					
the heat exchanger are the same. Show how to determine the minimum heating medium consumption. Discusse the change of equivalent difference of temperature when the consumption of heating medium	example questions/	1. Draw a diagram of the injector and show how to determine the volumetric flow rate at which it will be possible to reach the maximum suction depth. The dimensions of the injector, i.e. the diameter of the water inlet pipe, nozzle diameter, overpressure in the inlet pipe, atmospheric pressure, and the temperature of the flowing water are known. Assume water is a perfect liquid. 2. Two filtrations of the same suspension were carried out: the first one using a filter with surface A and pressure p 1, the second one using the same filter (with surface A), but under pressure p $_2 = 4 p 1$. Compare the rates of filtrations and its efficiencies after time (the same for both filtrations). Assume that the resistance of the filter cloth and the time of additional operations can be neglected and the filter cake is incompressible. 3. Provide the principles of dimensional analysis. Using the dimensional analysis, present the procedure leading to the criterion equation for describing free settling, if it is known that the pressure exerted by the fluid on the settling particle depends on the settling velocity, the particle diameter, the density and viscosity of the fluid. 4. What is the ratio of the agitator rotation frequencies of the stirrer in two standard mixers of diameters D 1 and D $_2 = 3D 1$, respectively, if the specific power (power delivered per unit volume of liquid in the mixer) is the same and the mixing is in the laminar range/ turbulent range?						
	Work placement	Not applicable						

Document generated electronically. Does not require a seal or signature.