Subject card

Subject name and code	Mathematics, PG_00053079						
Field of study	Chemistry						
Date of commencement of studies	October 2023		Academic year of realisation of subject			2023/2024	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	2		ECTS credits			9.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Anita Dabrowicz-Tlałka				
	Teachers		mgr Dorota Garbowska dr Anita Dąrowicz-Tlałka				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Proje	Seminar	SUM
	Number of study hours	45.0	60.0	0.0	0.0	0.0	105
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	105		10.0		110.0	225
Subject objectives	The aim of this subject is to obtain the students competence in the range of using the basic methods of mathematical analysis and linear algebra.Furthermore, the student is able to use this knowledge to solve simple theoretical and practical problems that can be found in the field of engineering.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	[K6_K01] understands the need for lifelong learning, can inspire and organize the process of teaching other people		Student is able to process the acquired information, analyze and interpret it, draw conclusions and reason opinions.			[SK2] Assessment of progress of work	
	[K6_W01] has basic knowledge of selected areas of mathematics, including: algebra, differential calculus and integral calculus, functions of two variables, elements of analytical geometry, elements of vector analysis, differential equations and probability theory, and knowledge of physics: basic equations and concepts and physical laws, including the knowledge necessary to predict the course of physical phenomena and to solve various technical problems		Student examines the convergence of the number series. Student defines basic notions of matrix calculus. Student uses basic notions and formulas of matrix calculus in solving systems of linear equations. Student analisies properties of a given function of two variables using differentional calculus of several variables functions. Student uses double and triple integral in geometrical applications. Student determines gradient, divergence and rotation as well as field potential. Student demonstrates some chosen techniques of solving ordinary differential equations. Student gives the definition of basic notions of probability theory. Student describes the basic types of distributions of random variable.			[SW1] Assessment of factual knowledge	
	[K6_U04] can use professional vocäbulary, can prepare and communicate technical information in the form of text documents, spreadsheets, charts and technological schema		Student recognizes the importance of skillful use of basic mathematical apparatus in terms of technical study in future.			[SU2] Assessment of ability to analyse information	

Subject contents	Number series: Convergent and divergent series. Convergence tests of the number series. Elements of linear algebra: Matrices, their properties and operations on matrices. Determinants. Inverse of a square non-singular matrix. Dot product, cross product, their properties and its applications. The triple scalar product and applications.
	Systems of linear equations. Cramer patterns. The rank of the main and completed matrix. Kronecker- Capelli theorem.
Functions of two variables: Partial derivatives. Total differential.	
Taylors formula. Maxima and minima of a function of several variables.	
Multiple integrals: Normal and regular area. Double and triple integral. Change of variables - polar,	
cylindrical and spherical coordinates. Examples of applications.	
Elements of field theory: scalar and vector fields. Gradient, divergence, rotation.	

| eResources addresses | Adresy na platformie eNauczanie:
 WCh - Bt, Ch, TCh, ZT - s2: 2023/24 (A.Tlałka) - Moodle ID: 35749
 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=35749 |
| :--- | :--- | :--- |
| Example issues/
 example questions/
 tasks being completed | 1. Check the convergence of the series ... and determine its type. |
| 2. Discuss the solvability of the given system of equations | |

