Subject card

Subject name and code	Mathematics, PG_00057670						
Field of study	Green Technologies						
Date of commencement of studies	October 2023		Academic year of realisation of subject			2023/2024	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	2		ECTS credits			9.0	
Learning profile	general academic profile		Assessment form			exam	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Anita Dabrowicz-Tlałka				
	Teachers		dr Anita Dabrowicz-Tlałka				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Project	Seminar	SUM
	Number of study hours	45.0	60.0	0.0	0.0	0.0	105
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	105		10.0		125.0	240
Subject objectives	The aim of this subject is to obtain the students competence in the range of using the basic methods of mathematical analysis and linear algebra.Furthermore, the student is able to use this knowledge to solve simple theoretical and practical problems that can be found in the field of engineering.						

Learning outcomes	Course outcome	Subject outcome	Method of verification
	[K6_U03] is able to use information and communication technologies relevant to the common tasks of engineering, is able to use known methods and mathematical-physical models to describe and explain phenomena and chemical processes	The student is able to use information and communication technologies for active participation in discussions, cooperation in solving tasks, is able to use selected programs for calculations and is critical about the assessment of online resources.	[SU4] Assessment of ability to use methods and tools
	[K6_K01] understands the need for learning throughout life, can inspire and organize the learning process of others. Is aware of his/ her own limitations and knows when to ask the experts, can properly identify priorities for implementation, critically evaluate his knowledge	The student works systematically, is able to plan activities leading to the achievement of the planned learning outcomes. The student appreciates teamwork when solving tasks and solves tasks effectively. The student tries to solve the difficulties he encounters using available online resources and evaluates them critically.	[SK5] Assessment of ability to solve problems that arise in practice
	[K6_W01] has a basic knowledge from some branches of mathematics and physics useful for formulating and solving simple problems in the field of environmental technologies and modern analytical methods	Student examines the convergence of the number series. Student defines basic notions of matrix calculus. Student uses basic notions and formulas of matrix calculus in solving systems of linear equations. Student analisies properties of a given function of two variables using differentional calculus of several variables functions. Student uses double and triple integral in geometrical applications. Student determines gradient, divergence and rotation as well as field potential. Student demonstrates some chosen techniques of solving ordinary differential equations. Student gives the definition of basic notions of probability theory. Student describes the basic types of distributions of random variable.	[SW1] Assessment of factual knowledge
Subject contents	Number series: Convergent and divergent series. Convergence tests of the number series.		
	Elements of linear algebra: Matrices square non-singular matrix. Dot pro product and applications. Systems of linear equations. Crame Capelli theorem. Functions of two variables: Partial Taylors formula. Maxima and minim Multiple integrals: Normal and regu cylindrical and spherical coordinates. Elements of field theory: scalar and Ordinary differential equations: First with constant coefficients. Calculus of probability: Discrete and variance of a random variable. Basi	, their properties and operations on duct, cross product, their properties patterns. The rank of the main and rivatives. Total differential. of a function of several variables. ar area. Double and triple integral. C Examples of applications. vector fields. Gradient, divergence, rotar order linear differential equations. continuous random variable, distribu distribution of a random variable.	matrices. Determinants. Inverse of a nd its applications. The triple scalar completed matrix. Kronecker- hange of variables - polar, otation. near differential equations order n tion function, expected value and
Prerequisites and co-requisites			

