

GDAŃSK UNIVERSITY

Subject card

Cubicat name and code	Solid state physics PG 00049429							
	Corracian							
Field of study								
Date of commencement of studies	February 2024		Academic year of realisation of subject			2023/2024		
Education level	second-cycle studies		Subject group			Obligatory subject group in the field of study		
Mode of study	Full-time studies		Mode of de	livery		at the r	university	
Year of study	1		Language	Language of instruction				
Semester of study	1		ECTS cred	ECTS credits				
Learning profile	general academic profile		Assessment form			exam		
Conducting unit	Department of Solid State Physics -> Faculty of Applied Physics and Mathematics			s				
Name and surname	Subject supervisor		prof. dr hab. inż. Jarosław Rybicki					
of lecturer (lecturers)	Teachers		dr hab. inż. N	dr hab. inż. Natalia Wójcik				
			prof. dr hab. inż. Jarosław Rybicki					
Lesson types and methods	Lesson type	Lecture	Tutorial	Laboratory	Projec	t	Seminar	SUM
of instruction	Number of study hours	30.0	0.0	30.0	0.0		0.0	60
	E-learning hours inclu	uded: 0.0						
Learning activity and number of study hours	Learning activity Participation in classes includ plan		n didactic Jed in study	Participation in consultation hours		Self-study		SUM
	Number of study hours	60		15.0		50.0		125
Subject objectives	Presentation and discussion of basic principles of materials physics with a particular attention payed to relations among the structure at the atomic level and macroscopic physical properties of materials.				bayed to ials.			
Learning outcomes	Course out	.come	Subj	ect outcome		Method of verification		
	К7_W01		Understanding the interrelationships between molecular sturcture of matter and microscopic properties of materials.			[SW1] Assessment of factual knowledge		
	K7_U01		The student performs a number of experiments, presents and discusses the measurement results and critically compares them with the published data.			[SU1] Assessment of task fulfilment		
	K7_K01		During the lectures new trends in materials' physics and applications will be highlighted. Understanding of new achivements in the field requires continuous following the literature.			[SK5] Assessment of ability to solve problems that arise in practice		

Subject contents	Crystalline and glassy materials (sh distribution functions); thermodynan applications); quasicrystals; liquid ci	ort-range, medium-range and long-ra nics of phase transitions; glass transi rystals; auxetics.	inge order, radial and angular tion; gels (classification and			
	The basic concepts of crystallography (Bravais lattice, primitive and elementary cell, simple and complex lattice, Miller indices, etc.); symmetry operations; crystallographic point groups and space groups; the models of amorphous bodies (CRN, RCP, random-coil); the reciprocal lattice and its properties; conditions for Braggs diffraction and Laue diffraction.					
	Crystalline bonds (ionic, covalent, n Madelung energy, the Evjen method	netallic, molecular and hydrogen); bin d and Ewald method); fluctuation-diss	ding energies (lattice sums, the sipation effects.			
	Structural defects: point defects (Schottky, Frenkel, substitutions, vacancies, intercalations); line defects (screw and edge dislocations, Frank network, mechanisms of dislocation generation, relationship with the strength of materials), planar defects (low-angle boundaries, stacking faults, twinning).					
	Defects in the electronic structure (plasmons, excitons, polarons, magnons, F-centers).					
	Lattice vibrations (mono- and diaton vibrations; the models of lattice hear anharmonic effects.	nic chain, optical and acoustic branch t capacity (classical, Einstein, Debye	nes, dispersion relations); normal); as well as the most significant			
	The principles of the Drude model, the electrical conductivity of metals, magnetoresistive effect and the Hall effect.					
	The Fermi gas of free electrons, the Fermi-Dirac distribution, Fermi level and chemical potential, degenerate and non-degenerate gas, the density of states, Wiedemann-Franz law.					
	Thermoemission and cold emission from metal to vacuum; contact voltage.					
	The model principles of the band theory; Blochs theorem; classification of solids on the basis of the band theory; effective mass and quasi-momentum.					
	The dependence of electrical condu in the carrier densities and in the rel effect, Poole-Frenkel effect, field de	activity on the temperature in semicor laxation time). Deviations from Ohms pendence of relaxation time).	ductors and metals (due to changes law (collisional ionisation, Zener			
Prerequisites and co-requisites	A course in physics at the level of th	ne first two years of studies.				
Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade			
and criteria	Preparation of written reports on laboratory exercises	100.0%	50.0%			
	Written test in theory	51.0%	50.0%			
Recommended reading	Basic literature	C. Kittel, Introduction to Solid State Physics, John Willey & Sons, NY 1966				
		N W Ashcroft, N D Mermin, Solid State Physics, Holt 1976				
	Supplementary literature	W A Harrison, Solid State Theory, McGraw Hill, NY 1970				
	eResources addresses	Adresy na platformie eNauczanie: FIZYKA CIAŁA STAŁEGO-Korozja - Moodle ID: 5575 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=5575				

Example issues/	1.	The properties of solids can be divided into structural and nonstructural. Explain the principle of this
example questions/	2.	What is the Bravais lattice? Name at least 7 Bravais lattices and characterize them by specifying the
tasks being completed		relation between parameters a, b, c, alpha, beta, gamma.
	3. 4	Define the Bravais lattice concepts, base, simple lattice, complex lattice and crystallographic axis.
	ч. 5.	What is crystal symmetry? Name at least 5 symmetry operations.
	6.	What are crystal symmetry groups? Give the classification and examples.
	1.	transition temperature? How does it depend on the cooling rate?
	8.	Discuss the concept of close and medium range ordering in glasses.
	9.	Discuss the CRN glass structure model and give examples.
	11.	Discuss the folded coil glass structure model and give examples.
	12.	Give two characterization methods for close and medium range ordering.
	13. 14	Discuss the concept of a reverse lattice, describe its main properties.
	15.	Formulate and derive the Laue condition for diffraction of crystals.
	16.	Discuss thermodynamically reversible point defects of crystals.
	18.	Why can a crystal with zero concentration of point defects not exist in nature? What are the two laws of
		nature that determine the equilibrium concentration of these defects?
	19.	Discuss the thermodynamically irreversible point defects in crystals, give examples
	20.	Discuss two types of boundary dislocations (structure, Burgers vectors, etc.). What is the simplest way
	00	to estimate the energy of the dislocation core? How does it compare to the energy of the elastic strain?
	22.	Discuss the conservative and non-conservative motion of dislocation. What is the relation between the dislocation motion and the plastic deformation of crystal?
	23.	Describe the Frank-Read mechanism of generation of dislocation. What is the Frank lattice? How is it
	24	generated? How does the crystal strength depend on the concentration of dislocation?
	24.	Explain the essence of van der Waals bonding in noble gas crystals.
	26.	Discuss metallic bonding. Using the uncertainty principle explain how delocalization of electrons affects
	27	the total energy of a metal.
	28.	Discuss the Ewjena and Ewald methods of calculating electrostatic interaction energy in ionic crystals.
	29.	Discuss covalent and hydrogen bonds. In which materials do they occur?
	31.	Calculate and discuss the dispersion relation for a two-atomic chain of atoms.
	32.	What are the normal vibrations of a crystal? What is their relation to vibrations of individual lattice
	33	atoms? Why would a harmonic crystal (if it existed) have a zero coefficient of thermal expansion?
	34.	Express the total energy of a crystal as the sum of independent normal oscillators.
	35.	Discuss the specific lattice heat of materials and calculate its value within the frame of the classic model.
	30. 37.	Discuss Debyes model of density of states. What is the Debye temperature and what is its physical
		meaning?
	38. 30	Discuss the Debye model of lattice specific heat of crystals.
	40.	Formulate the Drude model assumptions and calculate the expression for electrical conductivity of
	44	metals within this framework.
	41.	Formulate and derive the Wiedemann-Franz law (with the accuracy up to a multiplicative constant).
	43.	What are plasmons? Calculate the dependence of their frequency on the carrier concentration.
	44.	Discuss at least two phenomena causing the dependence of electrical conductivity on an electric field through its effect on the carrier concentration
	45.	Discuss the dependence of electrical conductivity on an electric field through its effect on the relaxation
	16	time.
	40.	concentration.
	47.	Discuss the dependence of electrical conductivity on temperature through its effect on the relaxation
	48	time. Calculate the density of states for a free electron gas with concentration n
	49.	What is the Fermi level? What is the chemical potential? What is the relationship between these values?
	50.	What is the Fermi-Dirac distribution? Sketch a graph of the Fermi-Dirac distribution in two temperatures,
	51.	Discuss the phenomenon of thermionic emission of electrons from metal to vacuum (Richardson's
		phenomenon).
	52.	Discuss the Schottky potential barrier lowering phenomenon with the thermionic emission of electrons from metal to vacuum
	53.	Discuss the Fowler-Nordheim effect (cold emission).
	54.	Formulate the Bloch theorem (assumptions, thesis, explanation of indices). Sketch a typical Bloch state.
	55.	Give the classification of solids within the band theory. Is there an energy gap in vitreous bodies? Give
	50	at least one experimental proof to justify your answer.
	30.	answer.
	57.	Discuss the concept of quasimomentum. Why should quasimomentum not be identified with the
	58	electron momentum? Discuss the concent of the effective mass of carriers in semiconductors. In what ragion of the operative
	50.	spectrum is it negative? How is it possible to physically interpret the negative effective mass?
	59.	Discuss the temperature dependence of the Fermi level and concentration of carriers in doped
	60.	semiconductors (n-type). Derive the self-agreed single-particle Schrödinger equation for electron gas in a crystal.
	61.	What are polarons? In which materials do they occur? Do they participate in electrical conductivity?

	 62. What are small and large excitons? In which materials do they occur? What can be said about their binding energy? Do they take part in electric current conduction? 63. Calculate the complex propagation constant of an electromagnetic wave in a material characterized by continuous isotropic material constants. How do the refractive index and the weakening constant depend on the frequency? 64. Describe the resonant absorption of electromagnetic waves on bound electrons. 65. Discuss the concept of normal and anomalous absorption on bound electrons. 66. Discuss the issue of dispersion of electromagnetic waves in metals.
Work placement	Not applicable