Subject card | Subject name and code | Robotics for Human Health and Performance, E:41050W0 | | | | | | | | | |---|--|---------|--|--|-------------------|---------------------------------------|---------|-----|--| | Field of study | Space and Satellite Technologies | | | | | | | | | | Date of commencement of studies | February 2024 | | Academic year of realisation of subject | | 2023/2024 | | | | | | Education level | second-cycle studies | | Subject group | | | | | | | | Mode of study | Full-time studies | | Mode of delivery | | at the university | | | | | | Year of study | 1 | | Language of instruction | | English | | | | | | Semester of study | 1 | | ECTS credits | | | 3.0 | | | | | Learning profile | | | Assessment form | | | assessment | | | | | Conducting unit | Institute of Mechanics and Machine Design - | | | esign -> Faculty of Mechanical Engineering and Ship Technology | | | | | | | Name and surname | Subject supervisor | | dr inż. Wiktor Sieklicki | | | | | | | | of lecturer (lecturers) | Teachers | | dr inż. Wiktor Sieklicki | | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Project | t | Seminar | SUM | | | | Number of study hours | 15.0 | 0.0 | 15.0 | 15.0 | 15.0 0.0 | | 45 | | | | E-learning hours included: 0.0 Address on the e-learning platform: https://enauczanie.pg.edu.pl/moodle/course/view.php?id=15781 | | | | | | | | | | | | | | | | | | 1 | | | Learning activity and number of study hours | Learning activity Participation in classes include plan | | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 45 | | 0.0 | | | | 45 | | | Subject objectives | Provide students with knowledge in area of biomechanics necessary to design instrumentation for human health and performance monitoring and assessment Provide students with basic knowledge in area of automatics necessary to design simple instrumentation for human health and performance monitoring and assessment Provide students with knowledge in area of sensors and signal acquisition necessary to assess human mobility Evoke discussion between students about human-robot interface | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | [K7_K03] Can analyse and implement assigned tasks while maintaining high technical standards. Is able to work and interact in a group, taking on different roles. Adheres to the principles of professional ethics and respects the diversity of views and cultures. | | He implements tasks in the field of designing devices for monitoring human health and performance, while maintaining high technical standards. | | | [SK2] Assessment of progress of work | | | | | | K7_U08 | | | | | [SU1] Assessment of task fulfilment | | | | | | K7_W03 | | | | | [SW1] Assessment of factual knowledge | | | | | Subject contents | Introduction to biomechanics Introduction to sensors and signals: bio-signal sensors, holter-based measuring devices, Introduction to robotic devices for human rehabilitation | | | | | | | | | | Prerequisites and co-requisites | basic knowlege in mathematics, mechanics, programming and automatics | | | | | | | | | Data wydruku: 19.05.2024 13:20 Strona 1 z 2 | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | |---|--|---|--|--|--| | design | 56.0% | 50.0% | | | | | exam | 56.0% | 50.0% | | | | | Basic literature | Introduction to Biomedical Engineering, Third Edition, y John Enderle, Joseph Bronzino, Academic Press Series in Biomedical Engineering, Elsevier 2012Giralt G., Hirzinger G., Robotic Research, Springer Press, 1996Arkin R., Behavior-Bassed Robotics, MIT Press, 1998Bishop R.,The Mechatronics Handbook. CRC Press 2002Siciliano B, Khatib O, editors. Springer Handbook of Robotics. New York: Springer; 2016.Patton MQ. Qualitative Research & Evaluation Methods: Integrating Theory and Practice. 4th Edition. Thousand Oaks: Sage Publications; 2015. | | | | | | Supplementary literature | https://www.nasa.gov/hrp | | | | | | eResources addresses | Adresy na platformie eNauczanie: | | | | | | Robotics and Medical robots Biomechanics of human hand, biomechnics of gait Devices for monitoring body temperature, body movements, electrodermal activity | | | | | | | Not applicable | | | | | | | | design exam Basic literature Supplementary literature eResources addresses Robotics and Medical robots Biomechanics of human hand, biomechanics of human hand, biomechanics for monitoring body temperature | design 56.0% Basic literature Introduction to Biomedical Engineer Joseph Bronzino, Academic Press Elsevier 2012Giralt G., Hirzinger G. 1996Arkin R., Behavior-Bassed Rol R., The Mechatronics Handbook. CF editors. Springer Handbook of Robot 2016. Patton MQ. Qualitative Resea Integrating Theory and Practice. 4th Publications; 2015. Supplementary literature https://www.nasa.gov/hrp eResources addresses Adresy na platformie eNauczanie: Robotics and Medical robots Biomechanics of human hand, biomechnics of gait Devices for monitoring body temperature, body movements, electroderm | | | | Data wydruku: 19.05.2024 13:20 Strona 2 z 2