Subject card

Subject contents	LECTURES Radon-Nikodym theorem. Conditional expectation. Regression. Sums of independent random variables. Weak law of large numbers. L^2 law of large numbers. Strong law of large numbers (Kolmogorov, Etemadi). Stationary sequences. Maximal ergodic lemma. Individual ergodic theorem for stationary sequences. Empirical distributions. Glivenko-Cantelli theorem. Weak convergence of measures. Characteristic functions. Central limit theorem. Multivariate Gaussian distributions. Fourier transform of measures on $R^{\wedge} n$. Descriptive statistics. Point estimators. Confidence intervals. Hypothesis testing. Statistical inferring. TUTORIALS During tutorial classes (closely correlated with lectures) students solve numerical exercises and selected theoretical problems.		
Prerequisites and co-requisites	Courses completed: Probability Theory term IV (MAT1013/1)		
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Exam	51.0\%	50.0\%
	Test 2	51.0\%	25.0\%
	Test 1	51.0\%	25.0\%
Recommended reading	Basic literature	J.Jakubowski, R.Sztencel, Wstęp do teorii prawdopodobieństwa, Wydawnictwo SCRIPT, Warszawa, 2012. J.Jacod, P.Protter, Probability Essentials, Springer, Berlin Heidelberg, 2000. W.Feller, Wstęp do rachunku prawdopodobieństwa, t.I i II, PWN, warszawa, 2009.	
	Supplementary literature	I.I.Gichman, A.W.Skorochod, Wstęp do teorii procesów stochastycznych, PWN, Warszawa, 1968. P.Billingsley, Prawdopodobieństwo i miara, PWN, Warszawa, 1987. G.Grimmett, D.Stirzaker, Probability and Random Processes, Oxford University Press, 2006. R.Magiera, Modele i metody statystyki matematycznej, GiS, Wrocław, 2002.	
	eResources addresses		
Example issues/ example questions/ tasks being completed	At the beginning of the term students are provided with the list of problems and exercises to be solved or worked out by themselves. Their solutions are presemted on exercises where students give their comments and suggest improvements. Test problems are based on mentioned lists and exam on topics from lectures. Find conditional expectation with respect to a fixed sigma algebra. Study weak convergence and find the limit distribution foe a given sequence of random variables. Estimate a probability of a random event using the central limit theorem.		
Work placement	Not applicable		

