Subject card

Subject name and code	Linear algebra, PG_00021020						
Field of study	Mathematics						
Date of commencement of studies	October 2024		Academic year of realisation of subject			2024/2025	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study Subject group related to scientific research in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	1		ECTS credits			5.0	
Learning profile	general academic profile		Assessment form			assessment	
Conducting unit	Department of Nonlinear Analysis and Statistics -> Faculty of Applied Physics and Mathematics						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Joanna Cyman				
	Teachers		dr Joanna Cyman				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Proje	Seminar	SUM
	Number of study hours	30.0	30.0	0.0	0.0	0.0	60
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	60		5.0		60.0	125
Subject objectives	Basic notions of linear algebra						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	K6_U03		proper use of algebraic objects			[SU3] Assessment of ability to use knowledge gained from the subject	
	K6_W04		formulates theorems and definitions			[SW1] Assessment of factual knowledge	
	K6_U08		complex numbers, determinants, matrices,			[SU4] Assessment of ability to use methods and tools	
	K6_W07		linear properties in calculus and other parts of mathematics			[SW1] Assessment of factual knowledge	
	K6_U01		proving simple properties of matrices, linear independence of vectors,			[SU4] Assessment of ability to use methods and tools [SU2] Assessment of ability to analyse information	

Subject contents	Complex numbers. Operations Different forms of a complex nu root. The field of complex num Matrix calculus. Operations on elementary matrix transformati Systems of linear equations. C equations, the Kronecker-Cape Basic algebraic structures. Gro Vector space. Definition of vec	omplex numbers. Solving alg r. Geometric interpretation, Gau Complex polynomials. Funda ices. Determinants. Laplace r's system of equations. The eorem. Gauss Jordan method rings, bodies. Definitions and pace and subspace. Testing the	quations in the complex domain. plane. powers of numbers, n-th theorem of algebra. n. Inverse matrix. Matrix order, e of solutions to a system of linear es. independence of vectors.
Prerequisites and co-requisites			
Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade
and criteria	activity	30.0\%	20.0\%
	2 written tests	50.0\%	80.0\%
Recommended reading	Basic literature	Jurlewicz, Z. Skoczylas, Lin formulas, Oficyna Wydawni T. Jurlewicz, Z. Skoczylas, Oficyna Wydawnicza GiS, J. Topp, Linear Algebra, W Gdańsk 2015. J. Rutkowski,Linear Algebra G. Banaszak, W. Gajda, Ele A. Romanowski, Linear Alge	ebra 1 i 2 . Definitions, theorems, Wrocław 2012. Algebra 1 i 2. Examples and tasks, 2012. two Uniwersytetu Gdańskiego, in problems, PWN 2008 f linear algebraj, WNT 2002. d. PG 2003.
	eResources addresses	Adresy na platformie eNauc	
Example issues/ example questions/ tasks being completed	1. Draw the set $2<\|(3+4 i) z+i\|<3$ 2. Solve the given system of equal $\begin{aligned} & 4 x+y+3 z-t=5 \\ & 2 x-y+3 z+2 t=2 \\ & 3 x+y+2 z-t=1 \\ & 5 x+y+4 z+2 t=0 \end{aligned}$ 3.Define the vector space.	ns:	
Work placement	Not applicable		

