Subject card | | - | | | | | | | | | |---|---|------|--|-------------------------------------|--------|--|---------|-----|--| | Subject name and code | Robotic manipulators, PG_00053663 | | | | | | | | | | Field of study | Mechanical Engineering | | | | | | | | | | Date of commencement of studies | October 2022 | | Academic year of realisation of subject | | | 2024/2025 | | | | | Education level | first-cycle studies | | Subject group | | | | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 3 | | Language of instruction | | | English | | | | | Semester of study | 6 | | ECTS credits | | | 2.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Institute of Mechanics and Machine Design -> Faculty of Mechanical Engineering and Ship Technology | | | | | chnology | | | | | Name and surname | Subject supervisor | | dr inż. Wiktor Sieklicki | | | | | | | | of lecturer (lecturers) | Teachers | | | | | | | | | | Lesson types and methods | Lesson type Lecture | | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | of instruction | Number of study hours | 0.0 | 0.0 | 30.0 | 0.0 | | 0.0 | 30 | | | | E-learning hours included: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity Participation ir classes include plan | | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours 30 | | 0.0 | | 0.0 30 | | | | | | Subject objectives | Provide knowledge about manipulators, their classification, design, control and applications. | | | | | | | | | | Learning outcomes | Course out | come | Subject outcome | | | Method of verification | | | | | | K6_U01 | | Student is able to design simple subsystems of manipulators | | | [SU4] Assessment of ability to
use methods and tools
[SU2] Assessment of ability to
analyse information | | | | | | K6_U07 | | | | | [SU4] Assessment of ability to
use methods and tools
[SU1] Assessment of task
fulfilment | | | | | | K6_W12 | | Student is able to program simple control units of robots and understands the design of the programs used in controlling manipulators. | | | [SW2] Assessment of knowledge contained in presentation | | | | | | K6_W06 | | Student has the knowledge of chosen manipulators design | | | [SW2] Assessment of knowledge contained in presentation [SW1] Assessment of factual knowledge | | | | | Subject contents | Introduction to robotics, construction of robots and manipulators. Kinematics of robots and manipulators. Denavit-Hartenberg notation, direct and inverse kinematics. The manipulator's work space. Singularities of the manipulator. Programming the movement paths of an industrial manipulators. | | | | | | | | | | Prerequisites and co-requisites | basic knowledge in: mathematics, physics, mechanics, strength of the materials, machine design, informatics | | | | | | | | | | Assessment methods | Subject passing criteria | | Passing threshold | | | Percentage of the final grade | | | | | and criteria written report | | | 56.0% | | | 100.0% | | | | Data wydruku: 20.04.2024 17:36 Strona 1 z 2 | Recommended reading | Basic literature | Craig J., J., Wprowadzenie do robotyki. Mechanika i sterowanie, WNT, Warszawa 1993Jazar Reza, Theory of Applied Robotics, Kinematics, Dynamics and Control, Springer Press, 2010Giralt G., Hirzinger G., Robotic Research, Springer Press, 1996Honczarenko J., Roboty przemysłowe. Budowa i zastosowanie, WNT, Warszawa 2002Bishop R.,The Mechatronics Handbook. CRC Press 2002Siciliano B., Khatib O.: Springer Handbook of Robotics. Berlin: Springer 2008Morecki A., Knapczyk J., Kędzior K., Teoria mechanizmów i manipulatorów, WNT, Warszawa 2002Jarzębowska E.: Mechanika analityczna. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej 2003K. Kozłowski, P. Dutkiewicz, W. Wróblewskim, Modelowanie i sterowanie robotów. PWN Warszawa, 2003Węgrzyn S.: Podstawy automatyki. PWN Warszawa, 1978, | | | | | |--|--|--|--|--|--|--| | | Supplementary literature | Holejko D., Kościelny W.J.: Automatyka procesów ciągłych, Oficyni Wydawnicza Politechniki Warszawskiej, 2012,Żelazny M.: Podstaw automatyki, Państwowe Wydawnictwo Naukowe, 1976,Perycz S.: Podstawy automatyki. Skrypt PG, Gdańsk 1983,Jarzębowska E., Podstawy dynamiki mechanizmów i manipulatorów, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1998Arkin R., Behavior-Bassed Robotics. MIT Press, 1998 | | | | | | | eResources addresses | Adresy na platformie eNauczanie: | | | | | | Example issues/
example questions/
tasks being completed | Written report on: Design the kinematics of the manipulator using the RobotAnalyzer program and prepare an analysis of the movements and dynamics of the proposed manipulator. Select the Nachi MZ04 manipulator model available in the RobotDK software libraries and develop the movement path of this manipulator for the purpose of implementing a predefined task in the simulation. Prepare an analysis of the kinematics and dynamics of this manipulator while executing the movement path. Write a control program for the Nachi MZ04 manipulator for the implementation of a movement-spatial task using the Nachi MZ04 robot controller and present the results of comparing the operation of the robot in real conditions and in a previously developed simulation. For the ABB IRB360 manipulator available in the RobotDK program libraries and develop a path for the manipulator to perform a predefined task. Prepare an analysis of the kinematics and dynamics of the manipulator while performing the task. Using the RobotStudio program, prepare the manipulator's movement path for the implementation of a predefined task of the ABB IRB360 robot and perform the task in simulation and in reality. | | | | | | | Work placement | Not applicable | | | | | | Data wydruku: 20.04.2024 17:36 Strona 2 z 2