Subject card | Subject name and code | Structure of Ship Devices, PG_00056424 | | | | | | | | | |---|---|---|---|-------------------------------------|--------|--|--|-----|--| | Field of study | Ocean Engineering | | | | | | | | | | Date of commencement of studies | October 2022 | | Academic year of realisation of subject | | | 2024/2025 | | | | | Education level | first-cycle studies | | Subject group | | | | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 3 | | Language of instruction | | | Polish | | | | | Semester of study | 6 | | ECTS credits | | | 3.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Faculty of Ocean Engineering and Ship Technology | | | | | | | | | | Name and surname | Subject supervisor dr inż. Jacek Nakielski | | | | | | | | | | of lecturer (lecturers) | Teachers | | | | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Projec | ct Seminar | | SUM | | | | Number of study hours | 15.0 | 0.0 | 0.0 | 30.0 | 0.0 | | 45 | | | | E-learning hours included: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in
classes include
plan | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 45 | | 4.0 | | 26.0 | | 75 | | | Subject objectives | To acquaint students with the principle and process of designing ship equipment. | | | | | | | | | | Learning outcomes | Course out | Subj | | Method of verification | | | | | | | | [K6_W05] has an organized knowledge on design, construction and operation of ocean technology objects and systems | | The student knows the principles and guidelines of designing marine equipment. | | | [SW1] Assessment of factual knowledge | | | | | | [K6_U05] can formulate a simple engineering task and its specification within the range of design, construction and operation of ocean technology objects and systems | | Based on the guidelines, the student is able to formulate limitations and design needs. | | | [SU5] Assessment of ability to present the results of task [SU3] Assessment of ability to use knowledge gained from the subject [SU2] Assessment of ability to analyse information | | | | | | [K6_U03] can use computer-aided design, production and operation tools for ocean technology objects and systems | | The student is able to support the design process with computer tools. | | | [SU4] Assessment of ability to
use methods and tools
[SU1] Assessment of task
fulfilment | | | | | | [K6_W06] has an organized knowledge on engineering methods and design tools allowing the conducting of projects within the construction and operation of ocean technology objects and systems | | The student is able to choose the appropriate tools to perform a project task. | | | [SW3] Assessment of knowledge contained in written work and projects | | | | | Subject contents | Equipments of the line s shaft: clutch, gears, shafts, bearings. Controllable pitch propeler: to determine the basic parameters, types of mechanisms, under pressure to bring oil, servo system. Construction winches: drum, stacker lines, brake, hydraulic systems. Handling equipment: cranes and overhead cranes, cargo handling systems for liquid and bulk. Ramps and gates: to determine the basic parameters, types and structures. Basic ship s systems and installations: ballast, bilge, fire. Technological equipment of the special vessels:dredging vessels floating cranes, off-shore platforms, drillships, pipe-lying vessels, cable layers. Deep-water anchorage and dynamic positioning. | | | | | | | | | Data wydruku: 26.04.2024 16:23 Strona 1 z 2 | Prerequisites and co-requisites | 1.Fundamentals of Machine design 2.Fundamentals of ship equipment 3. Strength of materials | | | | | | | |--|---|---|-------------------------------|--|--|--|--| | | 4. Mechanics | | | | | | | | Assessment methods and criteria | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | | | Practical exercise | 50.0% | 50.0% | | | | | | | Midterm colloquium | 50.0% | 50.0% | | | | | | Recommended reading | Basic literature | 1. Dietrich M. i inni: Podstawy konstrukcji maszyn . WNT 1999 2. Szala J.: Napędy Mechaniczne - materiały z podstaw konstrukcji maszyn. Wydawnictwo ATR - Bydgoszcz 1997 3. Stryczek S.: Napęd hydrostatyczny. Wydawnictwo Naukowo- Techniczne Warszawa 1999 4. Pawlicki K.: Elementy d wignic. PWN, Warszawa, 1982 5. Wojtaszczyk B.: Urzśdzenia przeładunkowe drobnicowców. Wydawnictwo Morskie, 1988. 6. Pałuch K., Puchalski J., liwiński A.: Statki poziomego ładowania. Trademar, Gdynia 1996. 7. Perepeczko A.: Okrętowe urzśdzenia sterowe. Wydawnictwo Morskie Gdańsk 1983 8. Dymarski Cz.: Okrętowe ruby nastawne konstrukcja i sterowanie. Wydawnictwo Politechniki Gdańskiej, Gdańsk 2009. 9. Lisowski J., Galbas J., Krajczyński Z.: Okrętowe stery strumieniowe. Wydawnictwo Morskie Gdańsk | | | | | | | | Supplementary literature | Websites | | | | | | | | eResources addresses | sources addresses Adresy na platformie eNauczanie: | | | | | | | Example issues/
example questions/
tasks being completed | Preparation of design assumptions and performance of strength calculations for the main components of
the deck crane. Preparation of design assumptions and execution of strength calculations for the main elements of the
mooring winch. | | | | | | | | Work placement | Not applicable | Not applicable | | | | | | Data wydruku: 26.04.2024 16:23 Strona 2 z 2